Navigation Links
Future memory
Date:8/22/2012

A new class of organic materials developed at Northwestern University boasts a very attractive but elusive property: ferroelectricity. The crystalline materials also have a great memory, which could be very useful in computer and cellphone memory applications, including cloud computing.

A team of organic chemists discovered they could create very long crystals with desirable properties using just two small organic molecules that are extremely attracted to each other. The attraction between the two molecules causes them to self assemble into an ordered network -- order that is needed for a material to be ferroelectric.

The starting compounds are simple and inexpensive, making the lightweight materials scalable and very promising for technology applications. In contrast, conventional ferroelectric materials -- special varieties of polymers and ceramics -- are complex and expensive to produce. The Northwestern materials can be made quickly and are very versatile.

In addition to computer memory, the discovery of the Northwestern materials could potentially improve sensing devices, solar energy systems and nanoelectronics. The study will be published Aug. 23 by the journal Nature.

"This work will serve as a guide for designing these materials and using ferroelectricity in new ways," said Samuel I. Stupp, Board of Trustees Professor of Chemistry, Materials Science and Engineering, and Medicine. He is a senior author of the paper. "Our molecular design enables us to invent a nearly infinite library of ferroelectric materials."

Ferroelectric materials exhibit spontaneous electric polarization (making one side of the material positive and the opposite side negative) that can be reversed by the application of an electric field (from a battery, for example). These two possible orientations make the materials attractive to researchers developing computer memory because one orientation could correspond to a 1 and the other to a 0. (Computer memory stores information in 1's and 0's.)

"The material's behavior is complex, but the superstructure is simple," said Sir Fraser Stoddart, Board of Trustees Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. He also is a senior author. "It is the superstructure that gives the material its desirable properties."

The two first authors of the paper are Alok Tayi, a former graduate student in Stupp's lab and now a postdoctoral fellow at Harvard University, and Alexander Shveyd, a former graduate student in Stoddart's lab and now a postdoctoral fellow at the University of Rochester.

These new supramolecular materials derive their properties from the specific interaction, repeated over and over again between two small alternating organic molecules, not from the molecules themselves. The two complementary molecules interact electronically and so strongly that they come close together and form very long crystals. This highly ordered 3-D network is based on hydrogen bonds.

In particular, the materials could help address the very expensive upkeep of cloud computing. Facebook, Google, Web-based email and other services are stored in the cloud and rely on volatile memory. When the power is turned off, volatile memory forgets the information it's holding. So the power has to be kept on.

The new ferroelectric materials could be developed into non-volatile memory. With this type of memory, if the power is turned off, the information is retained. If the cloud and electronic devices operated on non-volatile memory, $6 billion in electricity costs would be saved in the U.S. annually, the researchers said.

Current non-volatile computer memories are not based on ferroelectrics. But ferroelectric memories promise to consume less power, last longer and capture data faster than conventional non-volatile memories.

As so often happens in science, serendipity played a role in this discovery of super long crystals. Shveyd was trying to make boxlike molecular rings, but this outcome was never observed. Instead, he stumbled upon the interesting crystals.

"This discovery effectively opened up a Pandora's box," Stoddart said. "Alex started working with Alok in Stupp's group, and the two of them took advantage of the interactions between the two building blocks. They optimized the design so they could grow very long crystals with ferroelectric properties."

"The interaction between the molecules is very strong -- almost like a key in a lock," Shveyd said. "They fit very well together. This interaction produces ferroelectricity, which, to our great surprise, happened at room temperature."

This type of interaction between two molecules previously had been found to give rise to ferroelectricity in three other materials but only below liquid nitrogen temperatures. The new materials developed at Northwestern include additional interactions that enable this property to occur for the first time at room temperature and above.

The new material is all about electron exchange between two small molecules. One molecule is the donor of electrons (red), and the other is the acceptor of electrons (blue). The red and blue molecules are arranged in a mixed stack, and one type alternates with the other. Within that network, each molecule partners with a neighbor and exchanges electrons. Then an electric field is applied, prompting the molecules to switch partners, like dancers on a dance floor. This switch of partners produces ferroelectricity.

The research team developed a library of 10 complexes with this architecture. Three are reported in the Nature paper. The crystals are based on complexes between a pyromellitic diimide-acceptor and donors that are derivatives of naphthalene, pyrene and tetrathiafulvalene.

"The simplicity of our system demonstrates how self-assembly can endow materials with novel functions," Tayi said. "We hope our work motivates chemists and engineers to explore ferroelectricity in organic materials."


'/>"/>
Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. Tom Karagiannis, Ph.D. Awarded Future Fellowship by Australian Research Council (ARC)
2. CAS Names 2012 SciFinder® Future Leaders in Chemistry Program Participants
3. Quantum dots brighten the future of lighting
4. The future of aerospace takes off in Montreal
5. Palm Beach Residents to Learn How the Future of Regenerative Medicine Will Combat Aging
6. Discovery of a dark state could mean a brighter future for solar energy
7. Arteriocyte Takes the Lead in Promoting Building Future Pipeline of Women in STEM Career Fields
8. New 3-D transistors promising future chips, lighter laptops
9. Carbon-based transistors ramp up speed and memory for mobile devices
10. Penn researchers study of phase change materials could lead to better computer memory
11. Transparent memory chips are coming
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal articles ... findings are the subject of a new article on the Surviving Mesothelioma website. ... blood, lung fluid or tissue of mesothelioma patients that can help point doctors to ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... Calif. , June 23, 2016  The Prostate Cancer Foundation ... increasingly precise treatments and faster cures for prostate cancer. Members of the Class ... across 15 countries. Read More About the Class of ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the ... at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application ... team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our ...
Breaking Biology Technology:
(Date:6/9/2016)... June 9, 2016 Paris ... Teleste,s video security solution to ensure the safety of people ... during the major tournament Teleste, an international ... and services, announced today that its video security solution will ... to back up public safety across the country. The system ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, ... Infrastructure, Support & Other Service  The latest ... comprehensive analysis of the global Border Security market ... of $17.98 billion in 2016. Now: In ... in software and hardware technologies for advanced video surveillance. ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
Breaking Biology News(10 mins):