Navigation Links
Fuel from food waste: bacteria provide power
Date:7/16/2008

Researchers have combined the efforts of two kinds of bacteria to produce hydrogen in a bioreactor, with the product from one providing food for the other. According to an article in the August issue of Microbiology Today, this technology has an added bonus: leftover enzymes can be used to scavenge precious metals from spent automotive catalysts to help make fuel cells that convert hydrogen into energy.

Hydrogen has three times more potential energy by weight than petrol, making it the highest energy-content fuel available. Research into using bacteria to produce hydrogen has been revived thanks to the rising profile of energy issues.

We throw away a third of our food in the UK, wasting 7 million tonnes a year. The majority of this is currently sent to landfill where it produces gases like methane, which is a greenhouse gas 25 more potent than carbon dioxide. Following some major advances in the technology used to make "biohydrogen", this waste can now be turned into valuable energy.

"There are special and yet prevalent circumstances under which micro-organisms have no better way of gaining energy than to release hydrogen into their environment," said Dr Mark Redwood from the University of Birmingham. "Microbes such as heterotrophs, cyanobacteria, microalgae and purple bacteria all produce biohydrogen in different ways."

When there is no oxygen, fermentative bacteria use carbohydrates like sugar to produce hydrogen and acids. Others, like purple bacteria, use light to produce energy (photosynthesis) and make hydrogen to help them break down molecules such as acids. These two reactions fit together as the purple bacteria can use the acids produced by the fermentation bacteria. Professor Lynne Macaskie's Unit of Functional Bionanomaterials at the University of Birmingham has created two bioreactors that provide the ideal conditions for these two types of bacteria to produce hydrogen.

"By working together the two types of bacteria can produce much more hydrogen than either could alone," said Dr Mark Redwood. "A significant challenge for the development of this process to a productive scale is to design a kind of photobioreactor that is cheap to construct and able to harvest light from a large area. A second issue is connecting the process with a reliable supply of sugary feedstock."

With a more advanced pre-treatment, biohydrogen can even be produced from the waste from food-crop cultivation, such as corn stalks and husks. Tens of millions of tonnes of this waste is produced every year in the UK. Diverting it from landfill into biohydrogen production addresses both climate change and energy security.

The University of Birmingham has teamed up with Modern Waste Ltd and EKB Technology Ltd to form Biowaste2energy Ltd, which will develop and commercialise this waste to energy technology.

"In a final twist, the hydrogenase enzymes in the leftover bacteria can be used to scavenge precious metals from spent automotive catalysts to help make fuel cell that converts hydrogen into electricity," said Professor Lynne Macaskie. "So nothing is wasted and an important new application can be found for today's waste mountain in tomorrow's non-fossil fuel transport and energy."


'/>"/>

Contact: Lucy Goodchild
l.goodchild@sgm.ac.uk
44-011-898-81843
Society for General Microbiology
Source:Eurekalert

Related biology technology :

1. White Paper Details New Techniques for Isolating, Identifying Anaerobic Bacteria and Organisms
2. Rib-X Pharmaceuticals to Present at Cambridge Healthtech Institutes 2nd Annual Challenge of Antibacterial Development Conference
3. Study Confirms Anti-Infective ARIKACE(TM) Effectively Penetrates Mucus and Biofilm, and Kills Pseudomonas, a Bacteria Plaguing Cystic Fibrosis Patients
4. Immune system protein starves staph bacteria
5. Venter Institute Scientists Create First Synthetic Bacterial Genome
6. Free White Paper Available for Clinical Laboratory Managers: Effectively Isolating Anaerobic Bacteria
7. NOLabs AB Achieves Break-Through in Fight Against MRSA-Bacteria
8. Verenium Explores Bacterial Genes Inside Termite Guts to Understand How Wood is Broken Down and Converted to Energy
9. ICBS acquires 30% interest in Bacteria Bank Ltd.
10. University of Leicester scientists discover technique to help friendly bacteria
11. GlaxoSmithKline Awarded U.S. Department of Defense Contract to Pursue Novel Antibacterial Research Program
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/6/2016)... ... February 06, 2016 , ... The Center for Excellence in Education (CEE) ... school teachers on Wednesday February 10, 2016. This Bite of Science session, hosted ... Conservation, located at 1500 Remount Road in Front Royal, VA from 5:00 p.m. to ...
(Date:2/5/2016)... , Feb. 5, 2016 On Thursday, February ... information source for community, health and disaster services, and ... will integrate to enhance care coordination and service delivery ... services they need and to better connect service providers ... San Diego has handled ...
(Date:2/4/2016)... LEXINGTON, Massachusetts , February 4, 2016 - New ... --> - New FDA action date of July ... date of July 22, 2016   - ... the U.S. in the past decade indicated for the treatment of signs and ... Lifitegrast has the potential to be the only product approved in the ...
(Date:2/4/2016)... SHENZHEN, China , Feb. 4, 2016 ... government, and various medical institutions attended a ceremony in ... provide integrative, personalized cell therapy in 2016. ... the "Shenzhen Clinical Translation Platform for Personalized Cell Therapy" ... Shenzhen Regional Cell Production Center, both subsidiaries of Beike ...
Breaking Biology Technology:
(Date:1/25/2016)... BLUE BELL, Pa. , Jan. 25, 2016   Unisys ... facial recognition system at John F. Kennedy (JFK) International Airport, ... and Border Protection (CBP) identify imposters attempting to enter ... or do not belong to them. pilot testing ... rolled out initially at three terminals at JFK during January 2016. ...
(Date:1/20/2016)... , Jan. 20, 2016 A market that ... directly benefit from the explosion in genomics knowledge. Learn ... Sound Research. A range of dynamic trends are pushing ... - personalized medicine - pharmacogenomics - pathogen evolution - ... large markets - greater understanding of the role of ...
(Date:1/13/2016)... 2016 --> ... market report titled - Biometric Sensors Market - Global Industry ... 2023. According to the report, the global biometric sensors market was valued ... reach US$1,625.8 mn by 2023, expanding at a CAGR ... volume, the biometric sensors market is expected to reach ...
Breaking Biology News(10 mins):