Navigation Links
Fluid theory confirmed by Foton

In scientific research, there is great satisfaction when theoretical work is eventually supported by experimentation. Such was the case this week for a team of Italian and US scientists when they received preliminary confirmation of a 10-year-old theory from a fluid science experiment that is currently orbiting the Earth on the Foton-M3 spacecraft.

Although the Foton was only launched a week ago, the scientists are already very excited about the data they have received from their experiment, known as GRADFLEX (GRAdient-Driven FLuctuation EXperiment). The first results are qualitatively consistent with detailed theoretical predictions made over the past decade.

All liquids experience minute fluctuations in temperature or concentration as a result of the different velocities of individual molecules. These fluctuations are usually so small that they are extremely difficult to observe.

In the 1990s, scientists discovered that these tiny fluctuations in fluids and gases can increase in size, and even be made visible to the naked eye, if a strong gradient is introduced. One way to achieve this is to increase the temperature at the bottom of a thin liquid layer, though not quite enough to cause convection. Alternatively, by heating the fluid from above, convection is suppressed, making it possible to achieve more accurate measurements.

Although the early research involved ground-based measurements, it was suggested that the fluctuations would become much more noticeable in a weightless environment. Now, thanks to the Foton mission, the opportunity to test this prediction has come about, and the results completely support the earlier forecast.

The first images from the experiment were downloaded to the Payload Operations Centre in Kiruna, Sweden, and received on Earth after only a few orbits, explained Professor Marzio Giglio, leader of the team from the Department of Physics and CNR-INFM (Istituto Nazionale per la Fisica della Materia), University of Milan, Italy.

To the delight of the science team, the images visually support the theoretical predictions by showing a very large increase in the size of the fluctuations. Data analysis has also shown that the amplitude of the fluctuations in temperature and concentration greatly increased.

It is a rare event when a space mission is able to confirm a theoretical prediction in such record time, said Olivier Minster, Head of ESAs Physical Sciences Unit. These results are important because they are the first verification of the effects forecast a decade ago.

The availability of these images from the spacecraft has enabled us to change what we are doing so that we can optimise the scientific return from the mission, said Professor David Cannell of the University of California at Santa Barbara (UCSB). We will also have many thousands of images to analyse back in our labs after the experiment returns to Earth. This will keep us busy for quite a while.

It may be that our results will influence other types of microgravity research, such as the growth of crystals. Our research may even lead to some new technological spin-offs, said Professor Giglio.

GRADFLEX is one of 43 ESA scientific and technological experiments on board the 12-day Foton-M3 mission. The mission is scheduled to end on 26 September, when the re-entry capsule will return to Earth in Kazakhstan. The onboard experiments will be returned to their home institutions where the data will be carefully analysed over the coming months.


Contact: Olivier Minster
European Space Agency

Related biology technology :

1. Microfluidic analysis of multiplex PCR products for the genotyping of Helicobacter pylori
2. Maximize Viral RNA Yield from Biological Fluid
3. Genomic DNA Isolation From 1 ml of Body Fluid
4. Total RNA Isolation From 500 l Body Fluid
5. Simultaneous Screening of 23 Drugs of Abuse in Oral Fluid Using an LC/MS/MS Method
7. Gram Quantities of MAb Produced with Simple Bioreactor in Serum-Free Perfusion Culture Replacing Ascitic Fluid Production
Post Your Comments:
(Date:11/24/2015)... ... November 24, 2015 , ... InSphero AG, the leading supplier ... models, has promoted Melanie Aregger to serve as Chief Operating Officer. , ... the management team and was promoted to Head of InSphero Diagnostics in ...
(Date:11/24/2015)... 2015 /CNW Telbec/ - ProMetic Life Sciences Inc. (TSX: PLI) ... Pierre Laurin , President and Chief Executive Officer of ... Piper Jaffray 27 th Annual Healthcare Conference to be ... 2015. st , at 8.50am (ET) and ... the day. The presentation will be available live via a ...
(Date:11/24/2015)... , Nov. 24, 2015 HemoShear ... on discovering drugs for metabolic disorders, announced today ... to its Board of Directors (BOD). Mr. Watkins ... of Human Genome Sciences (HGS), and also served ... Jim Powers , Chairman and CEO ...
(Date:11/24/2015)... YORK , November 24, 2015 ... in a European healthcare ... which the companies will work closely together in identifying European ... unmet medical need. The collaboration is underpinned by a significant ... fund. This is the first investment by Bristol-Myers Squibb in ...
Breaking Biology Technology:
(Date:11/4/2015)... 2015 --> ... by Transparency Market Research "Home Security Solutions Market - Global ... - 2022", the global home security solutions market is expected to ... The market is estimated to expand at a CAGR ... 2022. Rising security needs among customers at homes, the ...
(Date:10/29/2015)... , Oct. 29, 2015  Rubicon Genomics, ... for U.S. distribution of its DNA library preparation ... and Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX Plasma-seq ... the preparation of NGS libraries for liquid biopsies--the ... diagnostic and prognostic applications in cancer and other ...
(Date:10/27/2015)... 27, 2015 Munich, Germany ... Mapping technology (ASGM) automatically maps data from mobile eye ... , so that they can be quantitatively analyzed ... Munich, Germany , October 28-29, 2015. SMI,s ... from mobile eye tracking videos created with SMI,s ...
Breaking Biology News(10 mins):