Navigation Links
'Flipping the switch' reveals new compounds with antibiotic potential
Date:10/31/2013

CORVALLIS, Ore. Researchers at Oregon State University have discovered that one gene in a common fungus acts as a master regulator, and deleting it has opened access to a wealth of new compounds that have never before been studied with the potential to identify new antibiotics.

The finding was announced today in the journal PLOS Genetics, in research supported by the National Institutes of Health and the American Cancer Society.

Scientists succeeded in flipping a genetic switch that had silenced more than 2,000 genes in this fungus, the cereal pathogen Fusarium graminearum. Until now this had kept it from producing novel compounds that may have useful properties, particularly for use in medicine but also perhaps in agriculture, industry, or biofuel production.

"About a third of the genome of many fungi has always been silent in the laboratory," said Michael Freitag, an associate professor of biochemistry and biophysics in the OSU College of Science. "Many fungi have antibacterial properties. It was no accident that penicillin was discovered from a fungus, and the genes for these compounds are usually in the silent regions of genomes.

"What we haven't been able to do is turn on more of the genome of these fungi, see the full range of compounds that could be produced by expression of their genes," he said. "Our finding should open the door to the study of dozens of new compounds, and we'll probably see some biochemistry we've never seen before."

In the past, the search for new antibiotics was usually done by changing the environment in which a fungus or other life form grew, and see if those changes generated the formation of a compound with antibiotic properties.

"The problem is, with the approaches of the past we've already found most of the low-hanging fruit, and that's why we've had to search in places like deep sea vents or corals to find anything new," Freitag said. "With traditional approaches there's not that much left to be discovered. But now that we can change the genome-wide expression of fungi, we may see a whole new range of compounds we didn't even know existed."

The gene that was deleted in this case regulates the methylation of histones, the proteins around which DNA is wound, Freitag said. Creating a mutant without this gene allowed new expression, or overexpression of about 25 percent of the genome of this fungus, and the formation of many "secondary metabolites," the researchers found.

The gene that was deleted, kmt6, encodes a master regulator that affects the expression of hundreds of genetic pathways, researchers say. It's been conserved through millions of years, in life forms as diverse as plants, fungi, fruit flies and humans.

The discovery of new antibiotics is of increasing importance, researchers say, as bacteria, parasites and fungi are becoming increasingly resistant to older drugs.

"Our studies will open the door to future precise 'epigenetic engineering' of gene clusters that generate bioactive compounds, e.g. putative mycotoxins, antibiotics and industrial feedstocks," the researchers wrote in the conclusion of their report.


'/>"/>

Contact: Michael Freitag
freitagm@science.oregonstate.edu
541-737-4845
Oregon State University
Source:Eurekalert  

Related biology technology :

1. An optical switch based on a single nano-diamond
2. Netswitch Technology Management Ranks in Top 100 Cloud and Managed Service Providers
3. Save Space with Scienceware® Switch-Grid™ Test Tube Racks by Bel-Art Products
4. Cornell bioengineers discover the natural switch that controls spread of breast cancer cells
5. Penn researchers make first all-optical nanowire switch
6. Millions of DNA switches that power human genomes operating system are discovered
7. Metamolecules that switch handedness at light-speed
8. Switchable nano magnets
9. Reversible doping: Hydrogen flips switch on vanadium oxide
10. The smallest conceivable switch
11. Find The Black Box Reveals how Troubled Doctors Have Found a Haven in Texas
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Flipping the switch' reveals new compounds with antibiotic potential
(Date:5/24/2017)... ... May 24, 2017 , ... ... being developed with Wi-Fi connectivity to reduce the amount of wiring in a ... In addition, compact mobile devices including infusion pumps, heart and hypertension monitoring, glucose ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... cloud-based file transfer solution that makes it easy for organizations to send and ... worry about cumbersome FTP software or email file size limitations. , Using ...
(Date:5/23/2017)... ... May 23, 2017 , ... ... cells for research and the development of cardiac regeneration therapies. The development ... numbers of cardiomyocytes (hPSC-CMs). Due to varying differentiation efficiencies, further enrichment of ...
(Date:5/23/2017)... ... May 22, 2017 , ... NetDimensions ... in the Aragon Research Globe™ for Corporate Learning, 2017. , Aragon Research defines ... market demand, and effectively perform against those strategies. NetDimensions’ ranking as a Leader ...
Breaking Biology Technology:
(Date:3/24/2017)... 2017 The Controller General of Immigration from Maldives ... Algeen have received the prestigious international IAIR Award for the most ... Reading ... Maldives ... Abdulla Algeen (small picture on the right) have received the IAIR award ...
(Date:3/23/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Vehicle Anti-Theft System ... over the next decade to reach approximately $14.21 billion by 2025. ... forecasts for all the given segments on global as well as ...
(Date:3/22/2017)... March 21, 2017 Vigilant Solutions , ... law enforcement agencies, announced today the appointment of retired ... of public safety business development. Mr. Sheridan ... experience, including a focus on the aviation transportation sector, ... recent position, Mr. Sheridan served as the Aviation Liaison ...
Breaking Biology News(10 mins):