Navigation Links
Fitting a biological nanopore into a man-made one, new ways to analyze DNA
Date:11/29/2010

Researchers at Delft University of Technology and Oxford University announce a new type of nanopore device that could help in developing fast and cheap genetic analysis. In the journal Nature Nanotechnology (November 28), they report on a novel method that combines man-made and biological materials to result in a tiny hole on a chip, which is able to measure and analyze single DNA molecules.

Biological

"The first mapping of the human genome - where the content of the human DNA was read off ('sequenced') - was completed in 2003 and it cost an estimated 3 billion US dollars. Imagine if that cost could drop to a level of a few 100 euro, where everyone could have their own personal genome sequenced. That would allow doctors to diagnose diseases and treat them before any symptoms arise." Professor Cees Dekker of the Kavli Institute of Nanoscience at Delft explains.

One promising device is called a nanopore: a minute hole that can be used to 'read' information from a single molecule of DNA as it threads through the hole.

New research by Dekker's group in collaboration with prof. Hagan Bayley of Oxford University, has now demonstrated a new, much more robust type of nanopore device. It combines biological and artificial building blocks.

Fragile

Dekker: 'Nanopores are already used for DNA analysis by inserting naturally occurring, pore-forming proteins into a liquid-like membrane made of lipids. DNA molecules can be pulled individually through the pore by applying an electrical voltage across it, and analyzed in much the same way that music is read from an old cassette tape as it is threaded through a player. One aspect that makes this biological technology especially difficult, however, is the reliance on the fragile lipid support layer. This new hybrid approach is much more robust and suitable to integrate nanopores into devices. '

Putting proteins onto a silicon chip

The new research, performed chiefly by lead author dr. Adam Hall, now demonstrates a simple method to implant the pore-forming proteins into a robust layer in a silicon chip. Essentially, an individual protein is attached to a larger piece of DNA, which is then pulled through a pre-made opening in a silicon nitride membrane (see the attached image). When the DNA molecule threads through the hole, it pulls the pore-forming protein behind it, eventually lodging it in the opening and creating a strong, chip-based system that is tailor-made for arrays and device applications. The researchers have shown that the hybrid device is fully functional and can be used to detect DNA molecules.


'/>"/>

Contact: Cees Dekker
c.dekker@tudelft.nl
Delft University of Technology
Source:Eurekalert

Related biology technology :

1. L.J. Star Announces Stainless Sanitary Fittings, Sight Glasses and Sight Flow Indicators for the Special Demands of the Pharmaceutical Industry
2. Fitting pieces for biosensors
3. Reportlinker Adds Global Automated And Rapid Microbiological Tests Industry
4. Met-Pro Corporation Acquires Patented Biological Technology
5. TASC, Inc. Appoints Rashid Chotani to Lead Chemical-Biological Defense Programs
6. Sorting device for analyzing biological reactions puts the power of a lab in a researchers pocket
7. Journal of Biological Chemistry Changes Approach to Manuscript Reviews and Eliminates Submission Fees
8. Novus Biologicals Awards Contract to Biovista Inc. to Drive its Web-Based Novus Explorer Service
9. Biological H1N1 Vaccines: Too Little, Too Late
10. Peregrine Pharmaceuticals Presents Promising Antiviral Data at 2009 Chemical and Biological Defense Science & Technology Conference
11. Novavax and CPL Biologicals Break Ground on New Influenza Vaccine Manufacturing Facility in India
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... June 23, 2016  Blueprint Bio, a company dedicated ... the medical community, has closed its Series A funding ... . "We have received a commitment from ... we need to meet our current goals," stated ... the runway to complete validation on the current projects ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
(Date:6/23/2016)... , June 22, 2016  Amgen (NASDAQ: ... the QB3@953 life sciences incubator to accelerate ... The shared laboratory space at QB3@953 was created to ... key obstacle for many early stage organizations - access ... the sponsorship, Amgen launched two "Amgen Golden Ticket" awards, ...
(Date:6/22/2016)... Research and Markets has announced the addition of the ... The global biomarkers market has ... The market is expected to grow at a five-year compound annual ... $50.6 billion in 2015 to $96.6 billion in 2020. ... to 2020) are discussed. As well, new products approved in 2013 ...
Breaking Biology Technology:
(Date:6/22/2016)... 2016 On Monday, the Department of Homeland ... share solutions for the Biometric Exit Program. The Request ... Protection (CBP), explains that CBP intends to add biometrics ... the United States , in order to deter ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
Breaking Biology News(10 mins):