Navigation Links
Fighting bacteria with mucus
Date:11/8/2012

CAMBRIDGE, MA -- Slimy layers of bacterial growth, known as biofilms, pose a significant hazard in industrial and medical settings. Once established, biofilms are very difficult to remove, and a great deal of research has gone into figuring out how to prevent and eradicate them.

Results from a recent MIT study suggest a possible new source of protection against biofilm formation: polymers found in mucus. The MIT biological engineers found that these polymers, known as mucins, can trap bacteria and prevent them from clumping together on a surface, rendering them harmless.

"Mucus is a material that has developed over millions of years of evolution to manage our interactions with the microbial world. I'm sure we can find inspiration from it for new strategies to help prevent infections and bacterial colonization," says Katharina Ribbeck, the Eugene Bell Career Development Assistant Professor of Biological Engineering and senior author of the paper, which appears in the Nov. 8 online edition of the journal Current Biology.

Mucin coatings may help prevent biofilm formation on medical devices and could also find applications in personal hygiene: Incorporating them into products such as toothpaste or mouthwash may supplement the body's own defenses, especially in people whose natural mucus has been depleted, Ribbeck says.

Lead authors of the Current Biology paper are former MIT postdoc Marina Caldara and Ronn Friedlander, a graduate student in the Harvard-MIT Division of Health Sciences and Technology. Other authors are Nicole Kavanaugh, an MIT graduate student in biology; Joanna Aizenberg, a professor of materials science at Harvard University; and Kevin Foster, a professor of evolutionary biology at the University of Oxford.

How to stop bacteria from teaming up

Mucus normally lines most of the wet surfaces of the body, including the respiratory and digestive tracts. "The textbook view of mucus is that it forms a barrier to infection, but it's not at all clear how it does so," Ribbeck says.

To investigate that question, Ribbeck and her colleagues observed the behavior of Pseudomonas aeruginosa bacteria in a growth medium that contained soluble purified mucins long proteins with many sugar molecules attached.

For bacteria to effectively penetrate the mucus layer and infect the tissues below, they need to form clusters that can adhere to the tissue surface. Clumps of bacteria are much more difficult for the immune system to clear, because immune cells are specialized to attack individual bacterial cells.

"In general, you want to have bacteria around, you just don't want them to team up," Ribbeck says. "You want to them to be mixed with many other bacteria that are good for you. You don't want a single species to take over, because then they may overgrow the system."

In the new study, the researchers found that mucins block bacterial cluster formation by preventing them from adhering, which is necessary for them to clump together. When bacteria stay motile, they end up suspended in a gooey mix and can do less harm.

"The mucins have the ability to suppress virulence by keeping the cells separate. It's like keeping your kids in separate rooms, so they will stay out of trouble," Ribbeck says.

However, bacteria are sometimes able to break through this defense system and cause infections. This can be accelerated by reductions in mucus due to aging, dehydration or chemotherapy, Ribbeck says. Or it may be that the mucus does not get replaced often enough, as happens in the mucus-clogged lungs of cystic fibrosis patients.

'Managing microbial behavior'

One advantage of using mucins as antimicrobial coatings is that the substance disarms pathogenic bacteria without killing them. This makes it less likely that bacteria could evolve resistance to mucins, as they do to antibiotic drugs. It would also spare the beneficial bacteria that live on mucus membranes.

"This is a nice mechanism where you just suppress the virulence traits without killing the bacteria," Ribbeck says. "It's nature's way of managing microbial behavioral in a way that could be useful to take advantage of."

Her lab is now investigating exactly how mucins prevent bacteria from losing their motility, and also how they block infection by nonmotile bacteria. Mucins seem to have wide-ranging antimicrobial properties: Ribbeck has previously shown that they can trap viruses and keep them from infecting cells, and she is now studying mucin interactions with other pathogenic organisms, such as yeasts.


'/>"/>
Contact: Sarah McDonnell
s_mcd@mit.edu
617-253-8923
Massachusetts Institute of Technology
Source:Eurekalert

Related biology technology :

1. Sabiya Donates Odor-Fighting Athletic Apparel to the Corps of Exploration Aboard E/V Nautilus
2. MU researchers identify key plant immune response in fight against bacteria
3. Sheffield scientists shine a light on the detection of bacterial infection
4. Bacterial protein mops up viruses found in contaminated water supplies
5. Decades-old conclusion about energy-making pathway of cyanobacteria is corrected
6. Manipulating way bacteria talk could have practical applications, Texas A&M profs say
7. Scientists Discover How a Bacterial Pathogen Breaks Down Barriers to Enter and Infect Cells
8. Targeted antibacterial agent rapidly created in response to serious food safety pathogen
9. Cepheid Receives Grant to Develop Sample Processing and Amplification Methods for Detection of Bloodstream Bacteria
10. U Alberta finds weakness in armor of killer hospital bacteria
11. Genetically engineered bacteria prevent mosquitoes from transmitting malaria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/18/2017)... ... August 18, 2017 , ... OAI, ... Semiconductor, MEMS, and Microfluidics Industries, announces the new Model 800E front and backside, ... in automated production mask aligners. OAI has already received and installed several ...
(Date:8/16/2017)... ... August 16, 2017 , ... ... the Fluidnatek® Electrospinning and Electrospraying line of nanofiber ... from table-top equipment for the lab to fully automated pilot plants and ...
(Date:8/16/2017)... , ... August 16, 2017 , ... ... U.S. Food and Drug Administration (FDA) inspection at our Dilworth, MN site. The ... was issued. This inspection was conducted as part of a routine Bioresearch Monitoring ...
(Date:8/15/2017)... ... , ... Kapstone Medical is proud to announce that it has ... and inventors develop and safeguard their latest innovations. The company has grown from ... of clients in the United States and around the world. , Company Founder ...
Breaking Biology Technology:
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access ... 15.1% over the next decade to reach approximately $1,580 million by ... and forecasts for all the given segments on global as well ...
(Date:3/22/2017)... 21, 2017 Optimove , provider ... retailers such as 1-800-Flowers and AdoreMe, today announced ... and Replenishment. Using Optimove,s machine learning algorithms, these ... and replenishment recommendations to their customers based not ... of customer intent drawn from a complex web ...
Breaking Biology News(10 mins):