Navigation Links
Feynman's double-slit experiment brought to life
Date:3/13/2013

The precise methodology of Richard Feynman's famous double-slit thought-experiment a cornerstone of quantum mechanics that showed how electrons behave as both a particle and a wave has been followed in full for the very first time.

Although the particle-wave duality of electrons has been demonstrated in a number of different ways since Feynman popularised the idea in 1965, none of the experiments have managed to fully replicate the methodology set out in Volume 3 of Feynman's famous Lectures on Physics.

"The technology to do this experiment has been around for about two decades; however, to do a nice data recording of electrons takes some serious effort and has taken us three years," said lead author of the study Professor Herman Batelaan from the University of Nebraska-Lincoln.

"Previous double-slit experiments have successfully demonstrated the mysterious properties of electrons, but none have done so using Feynman's methodology, specifically the opening and closing of both slits at will and the ability to detect electrons one at a time.

"Akira Tonomura's brilliant experiment used a thin, charged wire to split electrons and bring them back together again, instead of two slits in a wall which was proposed by Feynman. To the best of my knowledge, the experiments by Guilio Pozzi were the first to use nano-fabricated slits in a wall; however, the slits were covered up by stuffing them with material so could not be open and closed automatically."

In their experiments, which have been published today, Thursday 14 March, in the Institute of Physics and German Physical Society's New Journal of Physics, Batelaan and his team, along with colleagues at the Perimeter Institute of Theoretical Physics, created a modern representation of Feynman's experiment by directing an electron beam, capable of firing individual electrons, at a wall made of a gold-coated silicon membrane.

The wall had two 62-nm-wide slits in it with a centre-to-centre separation of 272 nm. A 4.5 m wide and 10 m tall moveable mask, controlled by a piezoelectric actuator, was placed behind the wall and slid back and forth to cover the slits.

"We've created an experiment where both slits can be mechanically opened and closed at will and, most importantly, combined this with the capability of detecting one electron at a time.

"It is our task to turn every stone when it comes to the most fundamental experiments that one can do. We have done exactly that with Feynman's famous thought-experiment and have been able to illustrate the key feature of quantum mechanics," continued Batelaan.

Feynman's double-slit experiment

In Feynman's double-slit thought-experiment, a specific material is randomly directed at a wall which has two small slits that can be opened and closed at will some of the material gets blocked and some passes through the slits, depending on which ones are open.

Based on the pattern that is detected beyond the wall on a backstop which is fitted with a detector one can discern whether the material coming through behaves as either a wave or particle.

When particles are fired at the wall with both slits open, they are more likely to hit the backstop in one particular area, whereas waves interfere with each other and hit the backstop at a number of different points with differing strength, creating what is known as an interference pattern.

In 1965, Feynman popularised that electrons historically thought to be particles would actually produce the pattern of a wave in the double-split experiment.

Unlike sound waves and water waves, Feynman highlighted that when electrons are fired at the wall one at a time, an interference pattern is still produced. He went on to say that this phenomenon "has in it the heart of quantum physics [but] in reality, it contains the only mystery."


'/>"/>
Contact: Michael Bishop
michael.bishop@iop.org
01-179-301-032
Institute of Physics
Source:Eurekalert

Related biology technology :

1. Florida Tech Research Team Earns Competitive Grant, Begins ISS Mission Biology Experiment
2. Invisible tool enables new quantum experiments
3. First experiment at the ALBA synchrotron
4. ORNL experiments prove nanoscale metallic conductivity in ferroelectrics
5. U of Toronto experiment named top breakthrough of 2011 by Physics World
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... CA (PRWEB) , ... January 19, 2017 , ... ... delivery of product vigilance software to leading biopharmaceutical and medical device manufacturers and ... is a fully 21 CFR Part 11-compliant email client designed to provide product ...
(Date:1/19/2017)... AquaBounty Technologies, Inc. (AIM: ABTU; NASDAQ: AQB), ... and a majority-owned subsidiary of Intrexon Corporation (NYSE: ... listing of its common shares on the NASDAQ Stock ... "AquaBounty,s listing on NASDAQ represents an important milestone ... the U.S. markets as we advance plans for commercial ...
(Date:1/19/2017)... , ... January 19, 2017 , ... FireflySci Inc. is ... rate. The tremendous growth is accounted to two main factors. The first ... the expanding network of vendors supplying FireflySci products all around the world. , 2016 ...
(Date:1/19/2017)...  Northwest Biotherapeutics, Inc. (OTCQB: NWBO) ("NW Bio"), a ... operable and inoperable solid tumor cancers, announced today that ... NW Bio, will present at the Phacilitate Immunotherapy World ... Regency Hotel in Miami, Florida . ... "New Therapeutic Approaches – Expanding the Reach of Cancer ...
Breaking Biology Technology:
(Date:1/18/2017)... MINNETONKA, Minn. , Jan. 18, 2017 /PRNewswire/ ... eClinical technology company that supports the entire spectrum ... 2016 has been another record-breaking year for the ... and market interest in MedNet,s eClinical products and ... to the tremendous marketplace success of ...
(Date:1/12/2017)... 2017  New research undertaken by Fit Small Business ... 1,000 participants were simply asked which office technology had they ... consider standard issue.  Insights on what will be ... from futurists and industry leaders including Penelope Trunk , ... Some of these findings included; ...
(Date:1/11/2017)... , Jan. 11, 2017  Michael Johnson, co-founder of Visikol Inc. ... Group, Inc., has been named to the elite "Forbes 30 Under ... one of 600 people in 20 fields nationwide to be recognized ... the 15,000 applicants were selected. ... He is currently a PhD candidate at Rutgers University. ...
Breaking Biology News(10 mins):