Navigation Links
Fast molecular rearrangements hold key to plastic's toughness
Date:12/1/2008

MADISON -- Plastics are everywhere in our modern world, largely due to properties that render the materials tough and durable, but lightweight and easily workable. One of their most useful qualities, however - the ability to bend rather than break when put under stress - is also one of the most puzzling.

This property, described as "plastic flow", allows many plastics to change shape to absorb energy rather than breaking apart, says University of Wisconsin-Madison chemistry professor Mark Ediger. For example, one type of bulletproof glass stops a bullet by flowing around it without breaking. Regular window glass, unable to flow in this way, would simply shatter.

"This is an odd combination of properties... These materials shouldn't be able to flow because they're rigid solids, but some of them can," he says. "How does that happen?"

Ediger's research team, led by graduate student Hau-Nan Lee, has now described a fundamental mechanism underlying this stiff-but-malleable quality. In a study appearing Nov. 28 in Science Express, they report that subjecting a common plastic to physical stress - which causes the plastic to flow - also dramatically increases the motion of the material's constituent molecules, with molecular rearrangements occurring up to 1,000 times faster than without the stress.

These fast rearrangements are likely critical for allowing the material to adapt to different conditions without immediately cracking.

Plastics are a type of material known to chemists and engineers as polymer glasses. Unlike a crystal, in which molecules are locked together in a perfectly ordered array, a glass is molecularly jumbled, with its constituent chemical building blocks trapped in whatever helter-skelter arrangement they fell into as the material cooled and solidified.

While this atomic disorder means that glasses are less stable than crystals, it also provides molecules in the glass with some wiggle room to move around without breaking apart.

"Polymer glasses are used in many, many different applications," including polycarbonate, which is found in popular reusable water bottles, Ediger says. Aircraft windows are also often made of polycarbonate. "One of the reasons polymer glasses are used is that they don't break when you drop them or fly into a bird at 600 miles per hour."

However, their properties can change dramatically under different physical conditions such as pressure, temperature, and humidity. For example, many polymer glasses become brittle at low temperatures, as anyone knows who has ever dropped a plastic container from the freezer or tried to work on vinyl house siding in cold weather.

As plastics become more and more prevalent in everything from electronics to airplanes, scientists and engineers face questions about the fundamental properties and long-term stability of these materials over a range of conditions.

For example, next-generation commercial aircraft are trending toward including less metal in favor of higher proportions of lightweight polymer materials - roughly 50 percent in the new Boeing 787 compared to only 10 percent in the Boeing 777 - and engineers need to know how these materials will respond to different stresses: a hard landing, strong winds, or changes in temperature or humidity.

"How is it going to respond 20 years from now when it gets twisted, or stretched, or compressed? Is it going to respond by absorbing that energy and staying intact, or is it going to respond by breaking bonds and flying apart into pieces?" asks Ediger.

The Wisconsin team examined the mechanics of a common plastic called polymethylmethacrylate also known as Plexiglas or acrylic - and found that a pulling force had a pronounced effect on the molecules within the material, speeding up their individual movements by more than a factor of 1,000. The team observed internal molecular rearrangements within 50 seconds that would have taken a full day without the force applied. They believe this increased motion allows the material to flow without breaking.

"When you pull on it, you increase the mobility in the material," Ediger says. "The act of pulling on it actually transforms the glass into a liquid that can then flow. Then when you stop pulling on it, it transforms back to a glass."

The work has benefited from collaboration between chemists and engineers in a Nanoscale Interdisciplinary Research Team (NIRT) supported by the National Science Foundation (NSF), which includes UW-Madison chemical and biological engineering professor Juan de Pablo and groups at the University of Illinois and Purdue University.

"From the most fundamental perspective, we're trying to understand why pulling on a glass allows it to flow," Ediger says. "The answer to that question will help us to better model the behavior of real materials in real applications."


'/>"/>

Contact: Mark Ediger
ediger@chem.wisc.edu
608-262-7273
University of Wisconsin-Madison
Source:Eurekalert

Related biology technology :

1. Center for Molecular Medicine Only Regional Provider of Test Suggested in FDA Alert on Prescribing Codeine to Nursing Mothers
2. Amsterdam Molecular Therapeutics to Release H1 2007 Results on August 29, 2007
3. Amsterdam Molecular Therapeutics Reports Half Year Results 2007
4. Rosetta Genomics to Present at the American Association of Cancer Research (AACR) "Molecular Diagnostics in Cancer Therapeutic Development" Conference
5. Glycominds Joins Biomolecular Photonic (BMP) Consortium to Develop New Molecular Imaging Technique
6. Former Pfizer Director of Inflammation Molecular Sciences to Spearhead Velcura Therapeutics Inflammatory Disease Initiatives
7. Sunesis Pharmaceuticals to Present Data at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics
8. Astex Drug Candidates to be Featured at the 2007 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics
9. Center for Molecular Medicine One of the First Midwest Labs to Offer Advanced Test for Patients with Metastatic Breast Cancer
10. Delivering Molecular Imaging Solutions Across Clinical Specialties: Siemens Showcases New Technologies at RSNA 2007
11. Center for Molecular Medicine Offers Xceed Ziplex(TM) Services to Research Community
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... , June 23, 2016   EpiBiome , a ... $1 million in debt financing from Silicon Valley Bank ... automation and to advance its drug development efforts, as ... facility. "SVB has been an incredible strategic ... services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software ... State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , ... Tremblay, President and COO of STACS DNA. “In further expanding our capacity as a ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology:
(Date:4/15/2016)... April 15, 2016 Research ... Gait Biometrics Market 2016-2020,"  report to their offering.  ... ) , ,The global gait biometrics market is ... during the period 2016-2020. Gait analysis ... can be used to compute factors that are ...
(Date:4/13/2016)... April 13, 2016  IMPOWER physicians supporting Medicaid patients ... a new clinical standard in telehealth thanks to a ... the higi platform, IMPOWER patients can routinely track key ... body mass index, and, when they opt in, share ... visit to a local retail location at no cost. ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
Breaking Biology News(10 mins):