Navigation Links
Fantastic flash memory combines graphene and molybdenite
Date:3/19/2013

EPFL scientists have combined two materials with advantageous electronic properties -- graphene and molybdenite -- into a flash memory prototype that is very promising in terms of performance, size, flexibility and energy consumption.

After the molybdenite chip, we now have molybdenite flash memory, a significant step forward in the use of this new material in electronics applications. The news is even more impressive because scientists from EPFL's Laboratory of Nanometer Electronics and Structures (LANES) came up with a truly original idea: they combined the advantages of this semiconducting material with those of another amazing material graphene. The results of their research have recently been published in the journal ACS Nano.

Two years ago, the LANES team revealed the promising electronic properties of molybdenite (MoS2), a mineral that is very abundant in nature. Several months later, they demonstrated the possibility of building an efficient molybdenite chip. Today, they've gone further still by using it to develop a flash memory prototype that is, a cell that can not only store data but also maintain it in the absence of electricity. This is the kind of memory used in digital devices such as cameras, phones, laptop computers, printers, and USB keys.

An ideal "energy band"

"For our memory model, we combined the unique electronic properties of MoS2 with graphene's amazing conductivity," explains Andras Kis, author of the study and director of LANES.

Molybdenite and graphene have many things in common. Both are expected to surpass the physical limitations of our current silicon chips and electronic transistors. Their two-dimensional chemical structure the fact that they're made up of a layer only a single atom thick gives them huge potential for miniaturization and mechanical flexibility.

Although graphene is a better conductor, molybdenite has advantageous semi-conducting properties. MoS2 has an ideal "energy band" in its electronic structure that graphene does not. This allows it to switch very easily from an "on" to an "off" state, and thus to use less electricity. Used together, the two materials can thus combine their unique advantages.

Like a sandwich

The transistor prototype developed by LANES was designed using "field effect" geometry, a bit like a sandwich. In the middle, instead of silicon, a thin layer of MoS2 channels electrons. Underneath, the electrodes transmitting electricity to the MoS2 layer are made out of graphene. And on top, the scientists also included an element made up of several layers of graphene; this captures electric charge and thus stores memory.

"Combining these two materials enabled us to make great progress in miniaturization, and also using these transistors we can make flexible nanoelectronic devices," explains Kis. The prototype stores a bit of memory, just a like a traditional cell. But according to the scientist, because molybdenite is thinner than silicon and thus more sensitive to charge, it offers great potential for more efficient data storage.


'/>"/>

Contact: Andras Kis
andras.kis@epfl.ch
41-216-933-925
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert  

Related biology technology :

1. Antenna-on-a-chip rips the light fantastic
2. Handheld plasma flashlight rids skin of notorious pathogens
3. Clionsky Neuro Systems (CNS-Neuro) Announces Publication of Study Finding Elderly Patients Unable to Recognize Their Memory Loss
4. Transparent memory chips are coming
5. Penn researchers study of phase change materials could lead to better computer memory
6. Carbon-based transistors ramp up speed and memory for mobile devices
7. Future memory
8. Stress breaks loops that hold short-term memory together
9. Computer memory could increase fivefold from advances in self-assembling polymers
10. UCLA engineers develop new energy-efficient computer memory using magnetic materials
11. NIST mechanical micro-drum used as quantum memory
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Fantastic flash memory combines graphene and molybdenite
(Date:1/19/2017)... ... January 18, 2017 , ... LabRoots , the ... around the world, was today awarded the "Best Science & Technology Social Networking ... merit and decided upon by a dedicated team of researchers and analysts. , ...
(Date:1/19/2017)... , Jan. 18, 2017  Northwest Biotherapeutics, Inc. ... DCVax® personalized immune therapies for operable and inoperable solid ... , Chief Technical Officer of NW Bio, will present ... 19, 2017, at the Hyatt Regency Hotel in ... will chair the session entitled "New Therapeutic Approaches – ...
(Date:1/18/2017)... January 18, 2017 According to a new market research ... Cytology, Infectious Disease), & End User (Molecular Diagnostic Laboratories, Academic and Research Institutions) ... reach USD 739.9 Million by 2021 from USD 557.1 Million in 2016, growing ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... ... January 18, 2017 , ... Executive ... 2017 in its continued commitment to the advancement of the clinical trials segment. ... issues related to clinical trial planning and management. , As executive talent ...
Breaking Biology Technology:
(Date:1/12/2017)... 12, 2017 A new report by Allied Market Research, titled, ... biometric technology market is expected to generate revenue of $10.72 billion by 2022, with ... Continue Reading ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) In the ...
(Date:1/6/2017)... Calif. , Jan. 5, 2017  Delta ID ... its iris scanning technology for automotive at CES® 2017. ... GNTX ) to demonstrate the use of iris ... identify and authenticate the driver in a car, and ... during the driving experience. Delta ID and ...
(Date:12/22/2016)... NEW YORK , December 22, 2016 ... global provider of secure solutions for the e-Government, Public Safety, HealthCare, ... a subsidiary of SuperCom, has been selected to implement and deploy ... county in Northern California , further expanding its ... ...
Breaking Biology News(10 mins):