Navigation Links
Explosives at the microscopic scale produce shocking results
Date:12/11/2007

LIVERMORE, Calif. -- U.S. troops blew up enemy bridges with explosives in World War II to slow the advance of supplies or enemy forces.

In modern times, patrollers use explosives at ski resorts to purposely create avalanches so the runs are safer when skiers arrive.

Other than creating the desired effect (a destroyed bridge or avalanche), the users didnt exactly know the microscopic details and extreme states of matter found within a detonating high explosive.

In fact, most scientists dont know what happens either.

But researchers from Lawrence Livermore National Laboratory and the Massachusetts Institute of Technology have created the first quantum molecular dynamics simulation of a shocked explosive near detonation conditions, to reveal what happens at the microscopic scale.

What they found is quite riveting: The explosive, nitromethane, undergoes a chemical decomposition and a transformation into a semi-metallic state for a limited distance behind the detonation front.

Nitromethane is a more energetic high explosive than TNT, although TNT has a higher velocity of detonation and shattering power against hard targets. Nitromethane is oxygen poor, but when mixed with ammonium nitrate can be extremely lethal, such as in the bombing of the Alfred P. Murrah Federal Building in Oklahoma City.

Despite the extensive production and use of explosives for more than a century, their basic microscopic properties during detonation havent been unraveled, said Evan Reed, the lead author of a paper appearing in the Dec. 9 online edition of the journal, Nature Physics. Weve gotten the first glimpse of the properties by performing the first quantum molecular dynamics simulation.

In 2005 alone, 3.2 billion kilograms of explosives were sold in the United States for a wide range of applications, including mining, demolition and military applications.

Nitromethane is burned as a fuel in drag racing autos, but also can be made to detonate, a special kind of burning in which the material undergoes a much faster and far more violent type of chemical transformation. With its single nitrogen dioxide (NO2) group, it is a simple representative version of explosives with more NO2 groups.

Though it is an optically transparent, electrically insulating material, it undergoes a shocking transformation: It turns into an optically reflecting, nearly metallic state for a short time behind the detonation shock wave front.

But further behind the wave front, the material returns to being optically transparent and electrically insulating.

This is the first observation of this behavior in a molecular dynamics simulation of a shocked material, Reed said. Ultimately, we may be able to create computer simulations of detonation properties of new, yet-to-be synthesized designer explosives.


'/>"/>

Contact: Anne Stark
stark8@llnl.gov
925-422-9799
DOE/Lawrence Livermore National Laboratory
Source:Eurekalert

Related biology technology :

1. A Large-Scale Research Project by a Dutch Consortium Addressing a Global Problem
2. CCMR gets $2.9M for training grad students in nanoscale science
3. Penn engineers design computer memory in nanoscale form that retrieves data 1,000 times faster
4. CCMR gets $2.9M for training grad students in nanoscale science
5. Penn engineers design computer memory in nanoscale form that retrieves data 1,000 times faster
6. Peter Cummings to receive the 2007 AIChE Nanoscale Science and Engineering Forum Award
7. Sol-gel inks produce complex shapes with nanoscale features
8. Elbit Medical Imaging Ltd. Announces Definitive Agreements for a Large Scale Luxury Mixed Use Project in Bangalore, India
9. Heavier hydrogen on the atomic scale reduces friction
10. China-Biotics, Inc. Receives Approval to Begin Construction on Large-Scale Manufacturing Facility
11. Anthrax vaccine produces immunity with nanoparticles, not needles
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/27/2017)... ... April 27, 2017 , ... ... why mass flow controllers based on capillary thermal mass flow technology provide exponentially ... flow control applications. Over 80% of all industrial processes—such as those involving ...
(Date:4/27/2017)... ... 27, 2017 , ... The Council for Agricultural Science and ... Lusk, a consummate communicator who promotes agricultural science and technology in the public ... explains how innovation and growth in agriculture are critical for food security and ...
(Date:4/26/2017)... ... April 26, 2017 , ... ... premiere team-building and cooking events company, offers one-of-a-kind gifts, ranging from gourmet cooking ... in California cuisine, and guests leave inspired with new cooking tips and techniques, ...
(Date:4/26/2017)... ... April 25, 2017 , ... LABS, Inc. (LABS) announced in December 2016 ... extensive test menu: Nucleic Acid Testing (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) specific ... offer NAT screening for blood donors under an Investigational New Drug (IND) study protocol. ...
Breaking Biology Technology:
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
(Date:3/24/2017)... 24, 2017 Research and Markets has announced ... Analysis & Trends - Industry Forecast to 2025" report to ... The ... a CAGR of around 15.1% over the next decade to reach ... analyzes the market estimates and forecasts for all the given segments ...
Breaking Biology News(10 mins):