Navigation Links
Exotic particles, chilled and trapped, form giant matter wave
Date:5/25/2012

Physicists have trapped and cooled exotic particles called excitons so effectively that they condensed and cohered to form a giant matter wave.

This feat will allow scientists to better study the physical properties of excitons, which exist only fleetingly yet offer promising applications as diverse as efficient harvesting of solar energy and ultrafast computing.

"The realization of the exciton condensate in a trap opens the opportunity to study this interesting state. Traps allow control of the condensate, providing a new way to study fundamental properties of light and matter," said Leonid Butov, professor of physics at the University of California, San Diego. A paper reporting his team's success was recently published in the scientific journal Nano Letters.

Excitons are composite particles made up of an electron and a "hole" left by a missing electron in a semiconductor. Created by light, these coupled pairs exist in nature. The formation and dynamics of excitons play a critical role in photosynthesis, for example.

Like other matter, excitons have a dual nature of both particle and wave, in a quantum mechanical view. The waves are usually unsynchronized, but when particles are cooled enough to condense, their waves synchronize and combine to form a giant matter wave, a state that others have observed for atoms.

Scientists can easily create excitons by shining light on a semiconductor, but in order for the excitons to condense they must be chilled before they recombine.

The key to the team's success was to separate the electrons far enough from their holes so that excitons could last long enough for the scientists to cool them into a condensate. They accomplished this by creating structures called "coupled quantum wells" that separate electrons from holes in different layers of alloys made of gallium, arsenic and aluminum.

Then they set an electrostatic trap made by a diamond-shaped electrode and chilled their special semiconducting material in an optical dilution refrigerator to as cold as 50 milli-Kelvin, just a fraction of a degree above absolute zero.

A laser focused on the surface of the material created excitons, which began to accumulate at the bottom of the trap as they cooled. Below 1 Kelvin, the entire cloud of excitons cohered to form a single matter wave, a signature of a state called a Bose-Einstein condensate.

Other scientists have seen whole atoms do this when confined in a trap and cooled, but this is the first time that scientists have seen subatomic particles form coherent matter waves in a trap.

Varying the size and depth of the trap will alter the coherent exciton state, providing this team, and others, the opportunity to study the properties of light and mater in a new way.


'/>"/>
Contact: Susan Brown
scinews@ucsd.edu
858-246-0161
University of California - San Diego
Source:Eurekalert  

Related biology technology :

1. New study confirms exotic electric properties of graphene
2. Exotic behavior when mechanical devices reach the nanoscale
3. Food and Beverage Giant Joins Kannapolis Research Center
4. Bay Area Youth to Represent ALS Patients at Giants and Angels Baseball Games on July 4th
5. Nevada Burning Man Festival Sees Giant Aerial Marijuana Bud Banner That Protests Hydroponics Hijacking
6. Reuters Highlights NutraPharma Financial Giant Predicts NutraPharma (OTCBB: NPHC) Shares Likely to Outperform the Market
7. Abt Electronics Becoming the Green Giant of Independent Retailers
8. VIASPACE CEO Discusses Giant King Grass at Industrial Biotechnology Congress in China
9. Trouble with sputter? Blame giant nanoparticles
10. Nanowires exhibit giant piezoelectricity
11. Carbon nanotube muscles generate giant twist for novel motors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Exotic particles, chilled and trapped, form giant matter wave
(Date:5/26/2016)... , May 26, 2016 Q ... that it will be a featured presenter at the 5th ... New York City at the Grand ... Corin , Q BioMed Inc. CEO, is scheduled to begin ... cover the company,s business strategy, recent developments and outline milestones ...
(Date:5/25/2016)... ... ... Lajollacooks4u has become a rising hotspot for specialized team building events in ... Fortune 500 companies, such as Illumina, Hewlett-Packard, Qualcomm and Elsevier, have traveled from ... Each event kicks off with an olive oil and salt-tasting competition. From there, ...
(Date:5/25/2016)... ... May 25, 2016 , ... Scientists at the University ... being tried for mesothelioma may be hampering the research that could lead to one ... Click here to read it now. , The team evaluated 98 mesothelioma ...
(Date:5/24/2016)... TEL AVIV, Israel , May 24, 2016   ... on providing physicians with artificial intelligence, real-time decision support tools ... selected to present at the 2016 Israeli Advanced Technology Industries ... part of Israel,s 15th National Life ... to 26th at the David Intercontinental Hotel in ...
Breaking Biology Technology:
(Date:4/13/2016)... April 13, 2016  IMPOWER physicians supporting Medicaid patients ... a new clinical standard in telehealth thanks to a ... the higi platform, IMPOWER patients can routinely track key ... body mass index, and, when they opt in, share ... visit to a local retail location at no cost. ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
(Date:3/15/2016)... 15, 2016 --> ... Transparency Market Research "Digital Door Lock Systems Market - Global ... 2023," the global digital door lock systems market in terms ... and is forecast to grow at a CAGR of 31.8% ... and medium enterprises (MSMEs) across the world and high industrial ...
Breaking Biology News(10 mins):