Navigation Links
Evolution in the nanoworld

This release is also available in German.

The automatic molecular assembly and selection steps exhibited by the molecules, which start as random mixtures, demonstrates a fundamental step in the evolution of life. The organization is activated by instructions which are built-in to the molecules. During assembly, molecules exhibit active selection: those in incorrect positions move to make room for others which fit properly. The molecular-level observation of such self-selection gives, for the first time, direct insight into fundamental steps of the biological evolution from inanimate molecules to living entities. The resulting nanostructures also hold great promise as an efficient avenue to new catalysts, nanotechnologies, and surface applications.

In the Proceedings of the National Academy of Sciences of the USA, the scientists from the research groups of Klaus Kern at the Max Planck Institute for Solid State Research in Stuttgart (MPI) and of Mario Ruben at the Karlsruhe Institute of Technology (KIT) explain that this observation of molecular organization at surfaces may lead to further insight of how simple, inanimate molecules can build up biological entities of increasing structural and functional complexity, such as membranes, cells, leaves, trees, etc. "The ability of molecules to selectively sort themselves in highly organized structures is a fundamental requirement for all molecular based systems, including biological organisms," explains Prof. Dr. Klaus Kern, director of the Nanoscale Science Department at the MPI.

Dr. Mario Ruben’s research team at KIT is responsible for designing molecules with built-in instructions, which when read out activate the self-selection process. He comments: "Spontaneous ordering from random mixtures only occurs when built-in instructions are carefully designed and sufficiently strong to initiate successful self-selection."

Scientists at the MPI directly observe the basic step of self-selection by imaging grid-like assemblies of molecules, which have sorted themselves by size. The features of the grid pattern are about one nanometer in size (0.000 000 001 meters), so small that they can only be imaged using state-of-the-art, ultra sensitive microscopy techniques. "Creating such miniscule architectures with features 50 000 times smaller than a hair is not a simple task," according to Dr. Steven Tait of the MPI. "Carving these nanometer structures with current technology would be inefficient and extremely expensive. Our strategy is to utilize instructed building blocks which can arrange themselves into desired structures."

The molecules are placed on ultra-clean metal surfaces and heated gently to enable motion, sorting, and organization. "The molecule movement on the copper surface is restricted to two-dimensions, but is still efficient enough to allow mixing of the molecules. By placing the molecules on a surface, we have the enormous advantage of being able to use specialized microscopes to ‚see’ the nanometer scale structures of the molecular assemblies," explains Alexander Langner, a graduate student at the MPI and first author of the study.

The study was conducted by Alexander Langner, Dr. Steven Tait, Dr. Nian Lin, and Prof. Dr. Klaus Kern of the Max Planck Institute for Solid State Research and Dr. Chandrasekar Rajadurai and Dr. Mario Ruben of the Karlsruhe Institute of Technology (KIT).

Professor Kern is the director of the Nanoscale Science Department at the MPI and leads a large research team conducting a wide range of studies related to the electronic, optical, and chemical properties of novel materials at the nanometer scale. Dr. Ruben is the leader of the research group "Functional Molecular Nanostructures" at the Institute of Nanotechnology in Karlsruhe and has a long-standing competence in the design and synthesis of instructed molecular components.


Contact: Professor Dr. Klaus Kern

Related biology technology :

1. Agile Revolution: A new era of software delivery
2. No time for evolution in telecommunications
3. Symphony Corp. and CareEvolution to partner
4. Broadjam partners with Dance Dance Revolution creator
5. Are you ready for the next workplace revolution?
6. How Sub-Zero Freezer Co. uses technology to revolutionize customer service
7. Harvard advance improves stem cell research; not a medical revolution
8. Analog people in the Digital Revolution, part II
9. The New Green Revolution offers hope to poor farmers and poor consumers
10. Analog people in the digital revolution
11. EraGens Revolutionary Genomic-Based Technologies
Post Your Comments:
Related Image:
Evolution in the nanoworld
(Date:6/27/2016)... ... 27, 2016 , ... Cancer experts from Austria, Hungary, Switzerland, ... a new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has just ... now. , Biomarkers are components in the blood, tissue or body fluids ...
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial ... Cary 5000 and the 6000i models are higher end machines that use the more ... the spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
Breaking Biology Technology:
(Date:5/16/2016)... 2016   EyeLock LLC , a market leader ... of an IoT Center of Excellence in ... development of embedded iris biometric applications. EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA. EyeLock,s platform uses video technology to deliver a ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... of Infosys (NYSE: INFY ), and Samsung SDS, ... partnership that will provide end customers with a more ... payment services.      (Logo: ) ... financial services, but it also plays a fundamental part in ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):