Navigation Links
Erythromycin A produced in E. coli for first time

MEDFORD/SOMERVILLE, Mass. -- Researchers at Tufts University School of Engineering have reported the first successful production of the antibiotic erythromycin A, and two variations, using E. coli as the production host.

The work, published in the November 24, 2010, issue of Chemistry and Biology, offers a more cost-effective way to make both erythromycin A and new drugs that will combat the growing incidence of antibiotic resistant pathogens. Equally important, the E. coli production platform offers numerous next-generation engineering opportunities for other natural products with complex biosynthetic pathways.

"We have now established E. coli as a viable option for making erythromycin A and as a platform for the directed production of erythromycin analogs. Our ability to fully manipulate erythromycin A's biosynthetic pathway to expand molecular diversity and antibiotic activity help sets a precedent for producing other similarly complex and medicinally relevant natural products," said lead researcher Blaine Pfeifer, Ph.D., assistant professor of chemical and biological engineering at Tufts.

Erythromycin A is a potent weapon in the treatment of bacterial infections. The bacterium Saccharopolyspora erythraea, which is found in the soil, naturally produces several variants of erythromycin. Erythromycin A is the most common and most biologically active.

Because of the challenges associated with engineering Saccharopolyspora erythraea, researchers have hoped to achieve the complete production of erythromycin A using E. coli. More than 20 enzymes must work in concert to create the erythromycin A molecule. This genetic and biochemical complexity makes synthesis notoriously hard. Previous research had reported manufacture of erythromycin A intermediates in E. coli but not the final product.

"To transfer and reconstitute these biosynthetic pathways is very difficult. In fact, erythromycin A poses nearly every challenge that must be addressed in the quest for complex heterologous biosynthesis of natural products," Pfeifer said.

He noted that the Tufts researchers followed a direction that was different from other groups. The Tufts team focused on reconstituting and ultimately manipulating the compound's original biosynthetic pathway rather than using analogous enzymes extracted from analogous pathways. The research team included Haoran Zhang, doctoral student in chemical engineering; Yong Wang, former postdoctoral associate now at East China University of Science & Technology; Jiequn Wu, a visiting doctoral student from East China University of Science & Technology, and Karin Skalina, a Tufts senior who is studying chemical engineering.


Contact: Kim Thurler
Tufts University

Related biology technology :

1. SemBioSys eligible to proceed with Phase I/II plant-produced insulin trial after submission of IND
2. Martek to be the Sole Source Supplier of DHA and ARA for Infant Formulas Produced By Grupo Ricap
3. SemBioSys begins phase I/II trial of insulin produced in plant seeds
4. SemBioSys receives US$2.5 million from option agreement with MannKind for plant-produced insulin
5. Semiconducting nanotubes produced in quantity at Duke
6. CEL-SCI Corporation to Launch Aseptic Filling for Stem Cell Produced Therapies and Other Biological Products
7. SemBioSys Genetics Inc. Announces Clinical Results with Plant-Produced Insulin
8. Inaugural Pharma Exchange Conference Produced by Informex to Draw Together Milwaukee, Wisconsin Chemical Industry
9. China-Biotics, Inc. Announces Conference Call to Discuss First Quarter 2009 Financial Results
10. MEDRAD Installs First Intego(TM) PET Infusion System
11. Pioneering IVF Technique Produces Region's First Pregnancy
Post Your Comments:
(Date:11/30/2015)... ... ... Global Stem Cells Group announced that its scientific team is in ... stem cells. The announcement starts a new phase toward launching the simple, quick system ... the lipoaspirate obtained from liposuction of excess adipose tissue. , Lipoaspirate, contains a ...
(Date:11/30/2015)... Dec. 1, 2015 /PRNewswire/ - BioAmber Inc. (NYSE: BIOA ), ... joined the American Business Act on Climate Pledge, alongside more ... standing with the Obama Administration to demonstrate an ongoing commitment ... outcome to the COP21 Paris climate ... Sarnia, Canada . --> BioAmber ...
(Date:11/30/2015)... , Nov. 30, 2015 /PRNewswire/ - Zenith Epigenetics Corp. ... Dr. Norman C.W. Wong to its Board of ... comes to Zenith with a wealth of experience as co-founder ... molecular biology. --> --> ... Zenith Epigenetics, board of directors. Zenith,s long standing expertise in ...
(Date:11/30/2015)... Human Longevity, Inc. (HLI), the genomics-based, technology-driven ... Genomics, Inc., a leading genome informatics company offering highly ... The San Diego -based company has ... and Co-founder, Ashley Van Zeeland , Ph.D., who is ... of the deal were not disclosed. ...
Breaking Biology Technology:
(Date:11/30/2015)... Nov. 30, 2015  BIOCLAIM announced today that ... year,s Fierce Innovation Awards:  Healthcare Edition, an awards ... , FierceHealthcare , and ... finalist in the category of "Privacy and Cybersecurity." ... --> Photo - ...
(Date:11/26/2015)... Nov. 26, 2015 Research and Markets ( ... "Capacitive Fingerprint Sensors - Technology and Patent Infringement Risk ... --> --> Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
(Date:11/20/2015)... NXTD ) ("NXT-ID" or the ... mobile commerce market and creator of the Wocket® smart ... recently interviewed on The RedChip Money Report ... on Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, ... NXTD ) ("NXT-ID" or the "Company"), a biometric authentication ...
Breaking Biology News(10 mins):