Navigation Links
Engineers produce 'how-to' guide for controlling the structure of nanoparticles
Date:9/24/2009

Tiny objects known as nanoparticles are often heralded as holding great potential for future applications in electronics, medicine and other areas. The properties of nanoparticles depend on their size and structure. Now researchers from North Carolina State University have learned how to consistently create hollow, solid and amorphous nanoparticles of nickel phosphide, which has potential uses in the development of solar cells and as catalysts for removing sulfur from fuel. Their work can now serve as a "how-to" guide for other researchers to controllably create hollow, solid and amorphous nanoparticles in order to determine what special properties they may have.

The study provides a step-by-step analysis of how to create solid or hollow nanoparticles that are all made of the same material. "It's been known that these structures could be made," says Dr. Joe Tracy, an assistant professor of material science engineering at NC State and co-author of the paper, "but this research provides us with a comprehensive understanding of nanostructural control during nanoparticle formation, showing how to consistently obtain different structures in the lab." The study also shows how to create solid nanoparticles that are amorphous, meaning they do not have a crystalline structure.

Tracy explains that there is a great deal of interest in the formation of hollow nanoparticles and amorphous nanoparticles. But for many kinds of nanoparticles, there had previously been no clear understanding of how to control the formation of these structures. As a result of the new study, Tracy says, "nanoparticles with desired structures can be made more consistently, making it easier for researchers to determine their electronic, optical and catalytic properties." For example, amorphous nanoparticles may be of use in future electronic applications or for nanostructure fabrication. Tracy stresses that while the NC State researchers were able to show how to create hollow nanoparticles and amorphous nanoparticles, they were not able to create nanoparticles that were both hollow and amorphous.

The study could also have implications for many additional types of nanoparticles, not just nickel phosphide. Tracy says that the findings "could provide important insights for further studies to control the structures of many other kinds of nanoparticles, with a wide array of potential applications." These could include metal oxide, sulfide, selenide and phosphide nanoparticles.

Specifically, the researchers found that they could control whether nickel phosphide nanoparticles would be hollow or solid by adjusting the ratio of phosphorus to nickel reactants when they synthesized the nanoparticles. The researchers found that they could create amorphous solid nanoparticles by controlling the temperature.


'/>"/>

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University
Source:Eurekalert

Related biology technology :

1. Penn engineers design computer memory in nanoscale form that retrieves data 1,000 times faster
2. Penn engineers design computer memory in nanoscale form that retrieves data 1,000 times faster
3. Harvard University engineers demonstrate quantum cascade laser nanoantenna
4. Cardiff University engineers give industry a moths eye view
5. Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
6. Engineers make first active matrix display using nanowires
7. Engineers harness cell phone technology for use in medical imaging
8. Nanowires may boost solar cell efficiency, UC San Diego engineers say
9. Engineers demonstrate first room-temperature semiconductor source of coherent Terahertz radiation
10. Engineers whip up the first long-lived nanoscale bubbles
11. University of Pennsylvania engineers reveal what makes diamonds slippery at the nanoscale
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/26/2016)... ... 2016 , ... FireflySci has been manufacturing quartz and glass ... the globe. Their cute firefly logo has been spreading to more and more ... calibration standards that never require recalibration. These revolutionary standards have changed many ...
(Date:5/25/2016)... ... May 25, 2016 , ... The American Medical Informatics Association ... the National Coordinator for Health IT (ONC) outlining a measurement approach to interoperability ... available when and where it was needed. The organization of health informatics professionals ...
(Date:5/24/2016)... ... May 24, 2016 , ... Cell therapies for a ... accelerated by research at Worcester Polytechnic Institute (WPI) that yielded a newly patented ... regeneration. , The novel method, developed by WPI faculty members Raymond Page, PhD, ...
(Date:5/23/2016)... Willoughby, Ohio (PRWEB) , ... May 23, 2016 ... ... Six Trends That Will Drive Precision Farming in 2017 and Beyond. The paper ... and practitioners in the precision ag industry. , “We’ve witnessed a lot of ...
Breaking Biology Technology:
(Date:4/26/2016)... Research and Markets has announced ... 2016-2020"  report to their offering.  , ,     (Logo: ... analysts forecast the global multimodal biometrics market to ... period 2016-2020.  Multimodal biometrics is being ... the healthcare, BFSI, transportation, automotive, and government for ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:3/31/2016)... RATON, Florida , March 31, 2016 ... LEGX ) ("LegacyXChange" or the "Company") ... for potential users of its soon to be launched ... video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide ... the use of DNA technology to an industry that ...
Breaking Biology News(10 mins):