Navigation Links
Engineers fine-tune the sensitivity of nano-chemical sensor
Date:5/8/2013

Researchers have discovered a technique for controlling the sensitivity of graphene chemical sensors.

The sensors, made of an insulating base coated with a graphene sheet--a single-atom-thick layer of carbon--are already so sensitive that they can detect an individual molecule of gas. But manipulating the chemical properties of the insulating layer, without altering the graphene layer, may yet improve their ability to detect the most minute concentrations of various gases.

The finding "will open up entirely new possibilities for modulation and control of the chemical sensitivity of these sensors, without compromising the intrinsic electrical and structural properties of graphene," says Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering at the University of Illinois at Chicago, and principal investigator on the study. He and his coworkers at the UIC College of Engineering collaborated with researchers from the Beckman Institute and the Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign and two institutions in Korea. Their findings are reported in the journal Nano Letter, available online in advance of publication.

Since its discovery nearly 10 years ago, graphene--in sheets, or rolled into nanotubes--has attracted huge scientific interest. Composed of a single layer of carbon atoms, graphene has potential for use in hundreds of high-tech applications. Its 2-D structure, exposing its entire volume, makes it attractive as a highly sensitive gas detector.

Salehi-Khojin's team, and others, earlier found that graphene chemical sensors depended on a structural flaw around a carbon atom for their sensitivity. They set out to show that "pristine" graphene sensors--made of graphene that was perfectly flawlesswouldn't work. But when they tested these sensors, they found they were still sensitive to trace gas molecules.

"This was a very surprising result," Salehi-Khojin said.

The researchers tested the sensor layer by layer. They found that pristine graphene is insensitive, as they had predicted.

They next set about removing any flaws, or reactive sites called dangling bonds, from the insulating layer. When a pristine insulating layer was tested with pristine graphene, again there was no sensitivity.

"But when dangling bonds were added back onto the insulating layer, we observed a response," said Bijandra Kumar, a post-doctoral research associate at UIC and first author of the Nano Letter study.

"We could now say that graphene itself is insensitive unless it has defects--internal defects on the graphene surface, or external defects on the substrate surface," said UIC graduate student Poya Yasaei.

The finding opens up a new "design space," Salehi-Khojin said. Controlling external defects in the supporting substrates will allow graphene chemFETs to be engineered that may be useful in a wide variety of applications.


'/>"/>

Contact: Jeanne Galatzer-Levy
jgala@uic.edu
312-996-1583
University of Illinois at Chicago
Source:Eurekalert

Related biology technology :

1. Stanford engineers use nanophotonics to reshape on-chip computer data transmission
2. Arizona State University engineers aim to improve performance of technology in extreme environments
3. Stanford engineers weld nanowires with light
4. Straintronics: Engineers create piezoelectric graphene
5. Cloak of invisibility: Engineers use plasmonics to create an invisible photodetector
6. Stanford engineers perfecting carbon nanotubes for highly energy-efficient computing
7. Engineers achieve longstanding goal of stable nanocrystalline metals
8. UCLA engineers develop new energy-efficient computer memory using magnetic materials
9. UT Arlington engineers working to prevent heat buildup within 3D integrated circuits
10. Cornell bioengineers discover the natural switch that controls spread of breast cancer cells
11. Forget about leprechauns, engineers are catching rainbows
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... Florida , March 22, 2017 ... ... various cancer conditions are being pressured as of late due ... for cancer pain management has a dramatic impact on patient,s ... research and development activities for identifying new forms of opioid ...
(Date:3/22/2017)... 22, 2017   VWR (NASDAQ: ... product and service solutions to laboratory and ... acquired EPL Archives, Inc., an international biorepository ... entire regulated product research, development and commercialization ... and ancillary services. EPL Archives is widely ...
(Date:3/22/2017)... Linda, Ca (PRWEB) , ... March 21, 2017 ... ... and clearance of biologics. To acquire information on the desired increase and/or decrease ... the biopharmaceutical industry for rapid N-glycosylation profiling of therapeutic antibodies. , To ...
(Date:3/22/2017)... ... March 21, 2017 , ... The Conference Forum has announced ... to be held on May 10-11, 2017, at the Colonnade Hotel in Boston, MA. ... Chief Medical Officer peer-to-peer learning, benchmarking and support. , “The Chief Medical Officer faces ...
Breaking Biology Technology:
(Date:2/21/2017)... 2017 Der weltweite Biobanking-Sektor wird ... einem Gespräch mit mehr als 50 Vertretern aus verschiedenen Branchen ... gilt, um diese Prognose zu realisieren. ... Zu den ... finanziellen Mittel für die Biobank, die Implementierung Zeit sparender ...
(Date:2/14/2017)... -- Wake Forest Baptist Medical Center today announced Julie Ann Freischlag, ... (CEO). Freischlag joins the medical center on May 1 ... who last year announced that he would transition to ... it since 2008.   As CEO, Freischlag ... academic health system, which includes Wake Forest School of ...
(Date:2/13/2017)... , Feb. 13, 2017 Former 9/11 Commission ... Judiciary Committee, Janice Kephart of Identity Strategy ... Donald Trump,s "Executive Order: Protecting the Nation ... 27, 2017):  "As President Trump,s ,Travel Ban, ... has now essentially banned the travel ban, it is ...
Breaking Biology News(10 mins):