Navigation Links
Energy-autonomous sensors for aircraft
Date:10/1/2009

If a bird collides with a plane the consequences can be fatal, not only for the creature itself. The impact can deform the structure of the aircraft fuselage, causing stresses in the material which can later turn into cracks. In future, sensors in the aircraft skin will detect such damage at an early stage and simplify maintenance and repair work. The sensors are light they don't need any cables or batteries. They draw their energy from the temperature difference between the outside air (about minus 20 to minus 50 degrees Celsius) and the passenger cabin (about 20 degrees Celsius). Because there are no batteries to change, the sensors can be located at inaccessible places on the aircraft.

EADS Innovation Works heads the development consortium. Researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg are developing the energy supply system for the sensors. "We use thermoelectric generators, developed in cooperation with Micropelt GmbH, and adapt them so that they work efficiently," explains Dr. Dirk Ebling, scientist at the IPM. Thermoelectric materials are semiconductors which generate electric power under the influence of a temperature difference. If a number of these thermoelectric elements are connected in series, enough energy is produced to power small sensors as well as a radio device transmitting the measurement results to a central unit. "We are also optimizing the heat flow," the research scientist continues. A key question is how to couple the thermoelectric generator to the warm and cold environments so that it transports enough heat. To obtain the answer the scientists set up a climate chamber in which the temperature profile of the aircraft fuselage is simulated. The first optimized prototypes have already been built. Development of a prototype of the entire system including the sensor, thermoelectric generator, energy storage device, charging electronics and signal transmission module is scheduled for completion in about three years' time, hopefully enabling the system to enter series production.

The applications for energy-autonomous sensors are numerous. In automobiles they could help to reduce weight by removing the need for heavy cable assemblies. They would also be useful in old buildings, where they could be easily affixed to walls e.g. to monitor dampness. Their use in the medical sector is feasible too. A sensor system integrated in a running shirt could monitor an athlete's pulse during training, and hearing aids could obtain their energy from body heat.


'/>"/>

Contact: Dr. Dirk Ebling
dirk.ebling@ipm.fraunhofer.de
49-761-885-7399
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology technology :

1. NanoSensors, Inc. Announces Reorganization of Executive Management Team and Redirection of Operations
2. The sensitive side of carbon nanotubes: Creating powerful pressure sensors
3. Purdue creating wireless sensors to monitor bearings in jet engines
4. Model is first to compare performance of biosensors
5. Advanced Energy Consortium will develop micro and nanosensors to boost energy production
6. Biosensors Receives CE Mark Approval for Its BioMatrix(R) Drug-Eluting Coronary Stent System
7. DNA sensors found to be an effective artificial nose
8. T-ray breakthrough signals next generation of security sensors
9. Finesse Solutions Opens New E-Store for Sensors
10. Nanotube production leaps from sooty mess in test tube to ready formed chemical microsensors
11. Commencement 2008: Student innovation could improve data storage, magnetic sensors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Energy-autonomous sensors for aircraft
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):