Navigation Links
Electronics without current: Finnish team to research the future of nanoelectronics
Date:9/12/2012

The Academy of Finland has granted 1.6 million to a consortium based at Tampere University of Technology (TUT) under the "Programmable Materials" funding scheme. The project runs from 1 September 2012 to 31 August 2016 and is entitled "Photonically Addressed Zero Current Logic through Nano-Assembly of Functionalised Nanoparticles to Quantum Dot Cellular Automata" ( PhotonicQCA).

PhotonicQCA fits well to the objectives of the Programmable Materials scheme of Academy of Finland, which looks for visionary new ways to use materials. The project combines expertise to look at the unique possibilities of combining organic chemistry, semiconductor growth and nanofabrication to put the basis of a visionary technology platform for future nanoelectronic devices and logic circuits.

The key idea behind the project is the so-called quantum dot cellular automaton (QCA). In QCAs, pieces of semiconductor so small that single electronic charges can be measured and manipulated are arranged into domino like cells. Like dominos, these cells can be arranged so that the position of the charges in one cell affects the position of the charges in the next cell, which allows making logical circuits out of these "quantum dominos". But, no charge flows from one cell to the next, i.e. no current. This, plus the extremely small size of QCAs, means that they could be used to make electronic circuits at densities and speeds not possible now. However, realisation of the dots and cells and making electrical connections to them has been a huge challenge.

Professors Donald Lupo from Department of Electronics, Mircea Guina and Tapio Niemi from Optoelectronics Research Centre (ORC), and Nikolai Tkachenko and Helge Lemmetyinen from Department of Chemistry and Bioengineering, want to investigate a completely new approach. They want to attach tailor-made molecules, optical nanoantennas, to the quantum dots, which can inject a charge into a dot or enable charge transfer between the dots when light of the right wavelength shines on them. This concept will be combined with the expertise at TUT's Optoelectronics Research Centre concerning "site-specific epitaxy", i.e. growing the quantum dots in the right place using nanofabrication techniques, which would enable a solid-state technology platform compatible with standard electronic circuits. If this works, then someday QCAs could be written and read with light.

Project coordinator, Professor Donald Lupo says: "As far as we can tell, no one has ever tried anything like this before. It's a completely new idea. It's highly risky because of many technological challenges, but the potential is amazing; being able to get rid of electrical connections and write and read nanoelectronic circuits using only light would be a huge breakthrough".


'/>"/>
Contact: Professor Donald Lupo, Tampere University of Technology
donald.lupo@tut.fi
358-408-490-614
Tampere University of Technology
Source:Eurekalert

Related biology technology :

1. Researching graphene nanoelectronics for a post-silicon world
2. UCSB professor receives award for graphene electronics research
3. New path to flex and stretch electronics
4. Nanowiggles: Scientists discover graphene nanomaterials with tunable functionality in electronics
5. Smaller and more powerful electronics requires the understanding of quantum jamming physics
6. Keeping electronics cool
7. Graphene electronics moves into a third dimension
8. A step toward better electronics
9. Functional oxide thin films create new field of oxide electronics
10. Researchers develop graphene supercapacitor holding promise for portable electronics
11. Better organic electronics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/29/2016)... 29, 2016 According to ... Research "Separation Systems for Commercial Biotechnology Market - ... Forecast 2015 - 2023", the separation systems for ... Mn in 2014 and is projected to expand ... 2023 to reach US$ 19,227.8 Mn in 2023. ...
(Date:4/28/2016)... PUNE, India , April 28, 2016 ... PT, JT, Stirling, and Brayton Cryocoolers), Service (Technical Support, ... Application, and Geography - Global Forecast to 2022", published ... to USD 2.94 Billion by 2022, at a CAGR ... Browse 70 market data Tables and 94 Figures spread ...
(Date:4/28/2016)... ... April 28, 2016 , ... Morris ... open house for regional manufacturers at its Maple Grove, Minnesota technical center, May ... Group, Chiron and Trumpf. Almost 20 leading suppliers of tooling, accessories, software ...
(Date:4/27/2016)... VANCOUVER, British Columbia , April 27, 2016 ... "Gesellschaft" oder "NanoStruck") (CSE: NSK) (OTCPink: NSKQB) ( ... sie im Anschluss an ihre Pressemitteilung vom 13. ... Inc. erhalten hat, ihre Finanzen um zusätzliche 200.000.000 ... auf 4.000.000 Kanadische Dollar zu bringen. Davon wurden ...
Breaking Biology Technology:
(Date:3/9/2016)... , March 9, 2016 This BCC ... future states of the RNA Sequencing (RNA Seq) market ... such as instruments, tools and reagents, data analysis, and ... various segments of the RNA-Sequencing market such as RNA-Sequencing ... Identify the main factors affecting each segment and forecast ...
(Date:3/9/2016)... GARDENS, Fla. , March 9, 2016 /PRNewswire/ ... management authentication and enrollment solutions, today announced the ... DigitalPersona ® Altus multi-factor authentication platform. ... and InfoSec managers to step-up security where it,s ... Washington, DC . ...
(Date:3/3/2016)...  FlexTech, a SEMI Strategic Association Partner, awarded five ... Development, Leadership in Education, and, in a category new ... year of the FLEXI Awards and the winners ... past years . Judging was done on a ... criteria, by a panel of non-affiliated, independent, industry experts. ...
Breaking Biology News(10 mins):