Navigation Links
Electronics without current: Finnish team to research the future of nanoelectronics
Date:9/12/2012

The Academy of Finland has granted 1.6 million to a consortium based at Tampere University of Technology (TUT) under the "Programmable Materials" funding scheme. The project runs from 1 September 2012 to 31 August 2016 and is entitled "Photonically Addressed Zero Current Logic through Nano-Assembly of Functionalised Nanoparticles to Quantum Dot Cellular Automata" ( PhotonicQCA).

PhotonicQCA fits well to the objectives of the Programmable Materials scheme of Academy of Finland, which looks for visionary new ways to use materials. The project combines expertise to look at the unique possibilities of combining organic chemistry, semiconductor growth and nanofabrication to put the basis of a visionary technology platform for future nanoelectronic devices and logic circuits.

The key idea behind the project is the so-called quantum dot cellular automaton (QCA). In QCAs, pieces of semiconductor so small that single electronic charges can be measured and manipulated are arranged into domino like cells. Like dominos, these cells can be arranged so that the position of the charges in one cell affects the position of the charges in the next cell, which allows making logical circuits out of these "quantum dominos". But, no charge flows from one cell to the next, i.e. no current. This, plus the extremely small size of QCAs, means that they could be used to make electronic circuits at densities and speeds not possible now. However, realisation of the dots and cells and making electrical connections to them has been a huge challenge.

Professors Donald Lupo from Department of Electronics, Mircea Guina and Tapio Niemi from Optoelectronics Research Centre (ORC), and Nikolai Tkachenko and Helge Lemmetyinen from Department of Chemistry and Bioengineering, want to investigate a completely new approach. They want to attach tailor-made molecules, optical nanoantennas, to the quantum dots, which can inject a charge into a dot or enable charge transfer between the dots when light of the right wavelength shines on them. This concept will be combined with the expertise at TUT's Optoelectronics Research Centre concerning "site-specific epitaxy", i.e. growing the quantum dots in the right place using nanofabrication techniques, which would enable a solid-state technology platform compatible with standard electronic circuits. If this works, then someday QCAs could be written and read with light.

Project coordinator, Professor Donald Lupo says: "As far as we can tell, no one has ever tried anything like this before. It's a completely new idea. It's highly risky because of many technological challenges, but the potential is amazing; being able to get rid of electrical connections and write and read nanoelectronic circuits using only light would be a huge breakthrough".


'/>"/>
Contact: Professor Donald Lupo, Tampere University of Technology
donald.lupo@tut.fi
358-408-490-614
Tampere University of Technology
Source:Eurekalert

Related biology technology :

1. Researching graphene nanoelectronics for a post-silicon world
2. UCSB professor receives award for graphene electronics research
3. New path to flex and stretch electronics
4. Nanowiggles: Scientists discover graphene nanomaterials with tunable functionality in electronics
5. Smaller and more powerful electronics requires the understanding of quantum jamming physics
6. Keeping electronics cool
7. Graphene electronics moves into a third dimension
8. A step toward better electronics
9. Functional oxide thin films create new field of oxide electronics
10. Researchers develop graphene supercapacitor holding promise for portable electronics
11. Better organic electronics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/12/2016)... FRANCISCO , February 12, 2016 ... Medicine Efforts by Enabling Scientific Understanding of Complex ... and Rare Diseases --> ... genomic diagnostics in South Asia and a leading provider ... would contribute $10 million to the GenomeAsia 100K ...
(Date:2/11/2016)...  Neurocrine Biosciences, Inc. (NASDAQ: NBIX ) today announced its ... --> --> For the ... $29.3 million, or $0.34 loss per share, compared to a net ... same period in 2014. For the year ended December 31, 2015, ... loss per share, as compared to a net loss of $60.5 ...
(Date:2/11/2016)... and GERMANTOWN, Maryland , February 11, ... Standard: QIA) today announced the introduction of more than ... profiling, expanding QIAGEN,s portfolio of Sample to Insight solutions ... select from over 20,000 human genes and lncRNA to ... cellular phenotypes and disease processes. --> QGEN ...
(Date:2/11/2016)... -- Spectra BioPharma Selling Solutions (Spectra) is a new ... the experience, expertise, operational delivery and customer focus ... Created in concert with industry leading commercial experts, ... tactical needs of its clients by providing value-based ... and non-personal promotion. --> ...
Breaking Biology Technology:
(Date:1/21/2016)... 2016 --> ... research report "Emotion Detection and Recognition Market by Technology (Bio-Sensors, ... Expression, Voice Recognition and Others), Services, Application Areas, ... 2020", published by MarketsandMarkets, the global Emotion Detection ... 22.65 Billion by 2020, at a CAGR of ...
(Date:1/18/2016)... Calif. , Jan. 18, 2016  Extenua ... software that simplifies the use and access of ... and go-to-market partnership with American Cyber.  ... brings extensive experience leading transformational C4ISR and Cyber ... and integrating the latest proven technology solutions," said ...
(Date:1/11/2016)... 11, 2016 Synaptics Incorporated (NASDAQ: SYNA ... announced that its ClearPad ® TouchView ™ ... two separate categories in the 8 th Annual ... Technology Breakthrough. The Synaptics ® TDDI solution enables ... chain, thinner devices, brighter displays and borderless designs. ...
Breaking Biology News(10 mins):