Navigation Links
Easy assembly of electronic biological chips
Date:1/15/2009

A handheld, ultra-portable device that can recognize and immediately report on a wide variety of environmental or medical compounds may eventually be possible, using a method that incorporates a mixture of biologically tagged nanowires onto integrated circuit chips, according to Penn State researchers.

"Probably one of the most important things for connecting to the circuit is to place the wires accurately," says Theresa S. Mayer, professor of electrical engineering and director of Penn State's Nanofabrication Laboratory. "We need to control spatial placement on the chip with less than a micron of accuracy."

Using standard chip manufacturing, each type of nanowire would be placed on the board in a separate operation. Using the researchers' bottom-up method, they can place three different types of DNA-coated wires where they wanted them, with an error rate of less than 1 percent.

"This approach can be used to simultaneously detect different pathogens or diseases based on their nucleic acid signatures," says Christine D. Keating, associate professor of chemistry.

"Device components such as nanowires can be synthesized from many different materials and even coated with biological molecules prior to assembling them onto a chip," the researchers note in today's (Jan. 16) issue of Science. They add that positioning the nanowires accurately is still difficult using conventional methods.

Using their assembly method, the researchers can place specific nanowires in assigned areas. They begin with a chip with tiny rectangular depressions in the places they wish to place the nanowires. They then apply an electrical field between electrodes that define the area where they want the nanowires to assemble. The Penn State researchers inject a mixture of the tagged nanowires and a liquid over the top of the chip. The nanowires are attracted to the area with an electric field and they fall into the proper tiny wells.

"We do not need microfluidic channels to control where each nanowire type goes," says Mayer. "We can run the solution over the whole chip and its wires will only attach where they are supposed to attach. This is important for scale-up."

The researchers then move the electric field and position the next tagged nanowires. In this proof-of-concept experiment, the different tagged wires were placed in rows, but the researchers say that they could be placed in a variety of configurations.

After all the wires are in place, they can be made into a variety of devices including resonators or field effect transistors that can be used to detect nucleic acid targets.

While the researchers have not yet connected each individual device to the underlying circuitry, they did test their chip to ensure that the wires assembled in the proper locations. They immersed the chip in a solution containing DNA sequences complementary to the three virus-specific sequences on the nanowires. Because they tagged the complimentary DNA with three differently colored fluorescent dyes, the attached DNA showed that the wires were in the proper places.

The researchers believe that their assembly method is extremely flexible, capable of placing a variety of conducting and non-conducting wires with a wide array of coatings.

"The eventual idea would be to extend the method to more nanowire types, such as different DNA sequences or even proteins, and move from fluorescence to real-time electrical detection on the chip," says Keating.

method, they can place three different types of DNA-coated wires where they wanted them, with an error rate of less than 1 percent.

"This approach can be used to simultaneously detect different pathogens or diseases based on their nucleic acid signatures," says Christine D. Keating, associate professor of chemistry.

"Device components such as nanowires can be synthesized from many different materials and even coated with biological molecules prior to assembling them onto a chip," the researchers note in today's (Jan. 16) issue of Science. They add that positioning the nanowires accurately is still difficult using conventional methods.

Using their assembly method, the researchers can place specific nanowires in assigned areas. They begin with a chip with tiny rectangular depressions in the places they wish to place the nanowires. They then apply an electrical field between electrodes that define the area where they want the nanowires to assemble. The Penn State researchers inject a mixture of the tagged nanowires and a liquid over the top of the chip. The nanowires are attracted to the area with an electric field and they fall into the proper tiny wells.

"We do not need microfluidic channels to control where each nanowire type goes," says Mayer. "We can run the solution over the whole chip and its wires will only attach where they are supposed to attach. This is important for scale-up."

The researchers then move the electric field and position the next tagged nanowires. In this proof-of-concept experiment, the different tagged wires were placed in rows, but the researchers say that they could be placed in a variety of configurations.

After all the wires are in place, they can be made into a variety of devices including resonators or field effect transistors that can be used to detect nucleic acid targets.

While the researchers have not yet connected each individual device to the underlying circuitry, they did test their chip to ensure that the wires assembled in the proper locations. They immersed the chip in a solution containing DNA sequences complementary to the three virus-specific sequences on the nanowires. Because they tagged the complimentary DNA with three differently colored fluorescent dyes, the attached DNA showed that the wires were in the proper places.

The researchers believe that their assembly method is extremely flexible, capable of placing a variety of conducting and non-conducting wires with a wide array of coatings.

"The eventual idea would be to extend the method to more nanowire types, such as different DNA sequences or even proteins, and move from fluorescence to real-time electrical detection on the chip," says Keating.


'/>"/>

Contact: A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481
Penn State
Source:Eurekalert  

Related biology technology :

1. Researchers control the assembly of nanobristles into helical clusters
2. 60 LED Lights Enhance Magnifying Lamp for Assembly, Engineering, Inspection or Research
3. J. Craig Venter Institute Researchers Publish Significant Advance in Genome Assembly Technology
4. Penn researchers demonstrate a flexible, 1-step assembly of nanoscale structures
5. Assembly technique for tiny wires may eventually help detect cancer and other diseases
6. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
7. Gene Codes Corporation Announces Version 4.8 of Sequencher Software for DNA Sequence Assembly & Analysis
8. New DNA-based technique for assembly of nano- and micro-sized particles
9. Eurotech Catalyst Module Awarded to Allen Organ Company From Arrow Electronics
10. Tully-Wihr Company Selects Web-Based Allscripts Electronic Health Record for 100 Northern California Physicians
11. MicroDose and Nexus6 Announce Collaboration to Evaluate Application of Remote Patient Compliance Monitoring Technology with MicroDoses Electronic Dry Powder Inhaler
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Easy assembly of electronic biological chips
(Date:12/2/2016)... ... 02, 2016 , ... In anticipation of AxioMed’s exclusive cleanroom ... company President, Jake Lubinski will be traveling to Switzerland from December 5-10. Mr. ... Lucerne, and Zurich to discuss the benefits of a viscoelastic disc. AxioMed received ...
(Date:12/2/2016)... ANGELES , Dec. 2, 2016 CytRx ... and development company specializing in oncology, today announced the ... noted sarcoma surgeon, industry consultant, and private healthcare investor, ... is a healthcare leader with clinical and strategic experience ... , CytRx,s Chairman and CEO. "As one of the ...
(Date:12/2/2016)... ... December 01, 2016 , ... ... for North American hospitals, will present its chain-of-custody solution for tracking and securing ... Las Vegas, Nev., Dec. 4-8, 2016. , Aerocom has a proven solution for ...
(Date:12/2/2016)... ... December 01, 2016 , ... ... Nanowear on their recent FDA Class II 510(k) clearance for their flagship medical ... in commercializing remote cardiac monitoring devices that rely on cloth-based nanosensors. While other ...
Breaking Biology Technology:
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s high-speed AFIS    ... ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint ... ... Multi-Biometric supplier: The company's Fingerprint Identification System is part of an efficient ...
(Date:11/24/2016)... Calif. , Nov. 23, 2016 Cercacor ... endurance athletes and their trainers non-invasively measure ... Index, Pulse Rate, and Respiration Rate in approximately 30 ... enables users easy and immediate access to key data ... part of a training regimen. Hemoglobin ...
(Date:11/22/2016)... , Nov. 22, 2016   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... Medical LiveWire Healthcare and Life Sciences Awards as ... caps off an unprecedented year of recognition and growth ... for over 15 years. iMedNet ...
Breaking Biology News(10 mins):