Navigation Links
Draper Device Could Help Pave Way Towards “Kidney-On-A-Chip” Development
Date:6/29/2012

Cambridge, MA (PRWEB) June 28, 2012

Researchers designed a microdevice that will better simulate a biologically realistic growth environment for human kidney cells in the laboratory. The proof-of-concept for a "kidney-on-a-chip" could one day give scientists a more accurate platform for drug screening or disease modeling.

The microscale tissue modeling device, developed by scientists from Draper Laboratory and Boston University, is the first biomimetic platform to take into account both physical and fluid-flow effects on kidney cells and is a step toward one day replicating kidney organ function in the lab. Their work was published in 2012 in the journal Integrative Biology.

The kidneys are a pair of fist-sized organs that filter blood and are crucial to maintaining fluid balance, regulating blood pressure, and eliminating toxins. Disorders of the kidney can lead to high blood pressure and heart failure, and diabetics are particularly at risk - the World Heath Organization estimates that 10-20% of diabetes-related deaths are due to kidney failure.

The primary structural unit of the kidney, called a nephron, is a highly organized tubule under constant exposure to fluid-flow stress from the blood and fluids it filters. In addition, nephron cells receive cues from the extracellular matrix, a network of structural and signalling proteins. In the laboratory, kidney cells are typically grown on flat plastic or glass surfaces in a static nutrient broth, an unrealistic growth environment which can potentially affect cell function and physiology.

To create a more accurate environment, Else Frohlich, Draper Fellow and Boston University graduate student, and her advisors fabricated a plastic and silicone rubber microdevice comprised of a textured growth surface and a microfluidic chamber. The growth surface, lined with a series of submicron ridges and grooves coated with collagen, mimics topographical and protein cues from the extracellular matrix. On this surface, they grew a layer of cells from a segment of the nephron known as the renal proximal tubule, and provided fluid-flow stress cues with a microfluidic pump.

They found that the combination of topography and fluid-flow enhanced tissue structure formation, and in particular increased the intensity of tight junction formation between the cells, which better resembles kidney cells in the body. These tight junctions act as a seal for filtration and on flat control surfaces, were less well formed.

Frohlich received the President’s Award, the top prize at Boston University’s Science and Engineering Research Symposium, for her work on the project, which contributed to her master’s thesis.

“We’re pushing the cells toward more realistic behavior,” says Joseph Charest, director of the organ-assist and in vitro models programs at Draper. “You can then model how well they replace and transport fluids, look at disease progression, and test potential therapies.”

The team is currently improving the device design and is testing permeability of the kidney cells to compare with how they function in the body. They plan on screening drugs and adding more cell types from other segments of the nephron in the future. “Eventually the goal is to create a full nephron-on-a-chip,” says Frohlich.

Draper Laboratory

Draper Laboratory is a not-for-profit, engineering research and development organization dedicated to solving critical national problems in national security, space systems, biomedical systems, and energy. Core capabilities include guidance, navigation and control; miniature low power systems; highly reliable complex systems; information and decision systems; autonomous systems; biomedical and chemical systems; and secure networks and communications.

http://www.draper.com

Read the full story at http://www.prweb.com/releases/2012/6/prweb9643975.htm.


'/>"/>
Source: PRWeb
Copyright©2012 Vocus, Inc.
All rights reserved  

Related biology technology :

1. Medi-Solve Coatings Develops Masking Process for Medical Devices
2. West Wireless Health Institute Applauds House Passage of Bill to Streamline FDA Medical Device Approval Process, Expedite Mobile Medical App Guidance
3. CU-Boulder physicists use ultrafast lasers to create first tabletop X-ray device
4. Bio-hybrid device acts as thermostat to control systemic inflammation in sepsis
5. BioRestorative Therapies Announces Next Generation of Stem Cell Disc Delivery Device
6. New Revolutionary Femoral Access Site Closure Device Shows Unparalleled Efficacy, Safety & Ease of Use, in a Wide Range of Patients Including Patients With a Challenging Anatomy
7. First successful human results achieved: Implantable wireless microchip drug delivery device
8. Research at Rice University leads to nanotube-based device for communication, security, sensing
9. Powerful AAC Device With Intel® i7 Processor Enables Natural Communication for Stroke, ALS and Autism Patients
10. ResearchMoz: Logic Integrated Circuit (IC) Market to 2020 - Programmable Logic Devices (PLD) and Application Specific Standard Product (ASSP) Dominate with a 78% Market Share
11. New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Draper Device Could Help Pave Way Towards “Kidney-On-A-Chip” Development
(Date:10/10/2017)... SAN DIEGO, CALIF. (PRWEB) , ... October 10, 2017 , ... ... website as part of its corporate rebranding initiative announced today. The bold new ... broaden its reach, as the company moves into a significant growth period. , It ...
(Date:10/10/2017)... 10, 2017 SomaGenics announced the receipt of ... develop RealSeq®-SC (Single Cell), expected to be the first ... (including microRNAs) from single cells using NGS methods. The ... to accelerate development of approaches to analyze the heterogeneity ... "New techniques for measuring levels of mRNAs in individual ...
(Date:10/9/2017)... ... , ... At its national board meeting in North Carolina, ARCS® Foundation ... of Physics and Astronomy, has been selected for membership in ARCS Alumni Hall ... 2015 Breakthrough Prize in Fundamental physics for the discovery of the accelerating expansion of ...
(Date:10/7/2017)...  The 2017 Nobel Prize in Chemistry recognizes ... Joachim Frank and Richard Henderson ... (cryo-EM) have helped to broaden the use ... The winners worked with systems manufactured by Thermo ... resolved, three-dimensional images of protein structures that lead ...
Breaking Biology Technology:
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... 2017  On April 6-7, 2017, Sequencing.com will host ... hackathon at Microsoft,s headquarters in Redmond, ... on developing health and wellness apps that provide a ... Genome is the first hackathon for personal genomics ... companies in the genomics, tech and health industries are ...
Breaking Biology News(10 mins):