Navigation Links
Down to the wire: Silicon links shrink to atomic scale
Date:1/5/2012

  • The narrowest conducting wires in silicon ever produced are shown to have the same electrical current carrying capability as copper, as published in Science.
  • This means electrical interconnects in silicon can be shrunk to the atomic-scale without losing their functionality Ohm's law holds true at the atomic-scale.
  • UNSW researchers will use these wires to address individual atoms a key step in realising a scalable quantum computer.

The narrowest conducting wires in silicon ever made just four atoms wide and one atom tall have been shown to have the same electrical current carrying capability of copper, according to a new study published today in the journal Science.

Despite their astonishingly tiny diameter 10,000 times thinner than a human hair these wires have exceptionally good electrical properties, raising hopes they will serve to connect atomic-scale components in the quantum computers of tomorrow.

"Interconnecting wiring of this scale will be vital for the development of future atomic-scale electronic circuits," says the lead author of the study, Bent Weber, a PhD student in the ARC Centre of Excellence for Quantum Computation and Communication Technology at the University of New South Wales, in Sydney, Australia.

The wires were made by precisely placing chains of phosphorus atoms within a silicon crystal, according to the study, which includes researchers from the University of Melbourne and Purdue University in the US.

The researchers discovered that the electrical resistivity of their wires a measure of the ease with which electrical current can flow does not depend on the wire width. Their behaviour is described by Ohm's law, which is a fundamental law of physics taught to every high school student.

"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature atoms," says Weber.

The discovery demonstrates that electrical interconnects in silicon can shrink to atomic dimensions without loss of functionality, says the Centre's Director and leader of the research, Professor Michelle Simmons.

"Driven by the semiconductor industry, computer chip components continuously shrink in size allowing ever smaller and more powerful computers," Simmons says.

"Over the past 50 years this paradigm has established the microelectronics industry as one of the key drivers for global economic growth. A major focus of the Centre of Excellence at UNSW is to push this technology to the next level to develop a silicon-based quantum computer, where single atoms serve as the individual units of computation," she says.

"It will come down to the wire. We are on the threshold of making transistors out of individual atoms. But to build a practical quantum computer we have recognised that the interconnecting wiring and circuitry also needs to shrink to the atomic scale."

Creating such tiny components has been made possible using a technique called scanning tunnelling microscopy. "This technique not only allows us to image individual atoms but also to manipulate them and place them in position," says Weber.


'/>"/>
Contact: Michelle Simmons
michelle.simmons@unsw.edu.au
61-042-533-6756
University of New South Wales
Source:Eurekalert

Related biology technology :

1. Researching graphene nanoelectronics for a post-silicon world
2. Controlling silicon evaporation allows scientists to boost graphene quality
3. Post-silicon computing
4. Microban Medical Silver Antimicrobial Technologies for HCR Silicone Achieve 5 Log Reductions in Bacteria Growth and Prevent Biofilm Formation
5. New nanoscale parameter by Aalto University resolves dilemmas on silicon property
6. UCL grows first telecommunications wavelength quantum dot laser on a silicon substrate
7. SuperNova Diagnostics® Selected to Present at Launch: Silicon Valley 2011
8. Swiss cheese design enables thin film silicon solar cells with potential for higher efficiencies
9. NRL scientists achieve high temperature milestone in silicon spintronics
10. Engineers create vibrant colors in vertical silicon nanowires
11. Engineers grow nanolasers on silicon, pave way for on-chip photonics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/27/2016)... ... 27, 2016 , ... The Pittcon Organizing Committee is pleased to announce that ... volunteer member of Committee since 1987. Since then, he has served in a number ... was chairman for both the program and exposition committees. In his professional career, Dr. ...
(Date:4/27/2016)... ... April 27, 2016 , ... ... to announce the appointment of John Tilton as Chief Commercial Officer.  Mr. Tilton ... one of the founding commercial leaders responsible for the commercialization of multiple orphan ...
(Date:4/27/2016)... , ... April 27, 2016 , ... Global Stem ... GSCG Advisory Board. Ross is the founder of GSCG affiliate Kimera Labs in Miami. ... where he studied hematopoietic stem cell transplantation for hematologic disorders and the suppression of ...
(Date:4/26/2016)... ... April 27, 2016 , ... ... Rothgerber Christie LLP as an associate in the firm’s Intellectual Property practice group. ... mechanical and electromechanical patent applications. He has an electrical engineering and computer engineering ...
Breaking Biology Technology:
(Date:4/26/2016)... -- Research and Markets has announced the ...  report to their offering.  , ,     (Logo: ... forecast the global multimodal biometrics market to grow ... 2016-2020.  Multimodal biometrics is being implemented ... healthcare, BFSI, transportation, automotive, and government for controlling ...
(Date:4/14/2016)... TEL AVIV, Israel , April 14, 2016 /PRNewswire/ ... in Behavioral Authentication and Malware Detection, today announced the ... has already assumed the new role. Goldwerger,s ... for BioCatch, on the heels of the deployment of ... In addition, BioCatch,s behavioral biometric technology, which discerns unique ...
(Date:3/29/2016)... RATON, Florida , March 29, 2016 ... or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are ... DNA in ink used in a variety of writing ... theft. Buyers of originally created collectibles from athletes on ... through forensic analysis of the DNA. ...
Breaking Biology News(10 mins):