Navigation Links
Discovery by UC Riverside physicists could enable development of faster computers

RIVERSIDE, Calif. Physicists at UC Riverside have made an accidental discovery in the lab that has potential to change how information in computers can be transported or stored. Dependent on the "spin" of electrons, a property electrons possess that makes them behave like tiny magnets, the discovery could help in the development of spin-based semiconductor technology such as ultrahigh-speed computers.

The researchers were experimenting with ferromagnet/semiconductor (FM/SC) structures, which are key building blocks for semiconductor spintronic devices (microelectronic devices that perform logic operations using the spin of electrons). The FM/SC structure is sandwich-like in appearance, with the ferromagnet and semiconductor serving as microscopically thin slices between which lies a thinner still insulator made of a few atomic layers of magnesium oxide (MgO).

The researchers found that by simply altering the thickness of the MgO interface they were able to control which kinds of electrons, identified by spin, traveled from the semiconductor, through the interface, to the ferromagnet.

Study results appear in the June 13 issue of Physical Review Letters.

Experimental results:

The spin of an electron is represented by a vector, pointing up for an Earth-like west-to-east spin; and down for an east-to-west spin.

In the researchers' experiment with the FM/SC structures, both spin up and spin down electrons were allowed to travel from the semiconductor to the ferromagnet.

The researchers found that when the structure's MgO interface is very thin (less than two atomic layers), spin down electrons pass through to the ferromagnet, while spin up electrons are reflected back, leaving only spin up electrons in the semiconductor.

They also found that when the interface is thicker than six atomic layers, both spin up and spin down electrons are reflected back, leaving electrons with zero net spin in the semiconductor.

But the surprising result for the researchers was that at an intermediate thickness, ranging from two to six atomic layers, the selectivity of the interface completely changes.

"We see a dramatic and complete reversal in the spin of electrons that pass through the interface," said Roland Kawakami, an assistant professor of physics who led the research team. "This time, spin up electrons pass through while spin down electrons are reflected back to the semiconductor. In other words, the thickness of the MgO interface determines whether spin up or spin down electrons are allowed to pass through it."

According to his research team, such a "spin reversal" can be used to control current flow.

Significance of the discovery:

"Electron spins are oriented at random in an ordinary electric circuit, and, therefore, do not affect current flow," explained Yan Li, the first author of the research paper, who made the discovery. "But if spin is polarized, that is, aligned in one direction, you can manipulate the flow of current and the transport of information a feature that would be of great interest to the semiconductor industry. What is amazing is that only a couple of atomic layers of MgO can completely reverse the spin selection of the interface. This is unexpected because MgO is not a magnetic material."

Li, a graduate student in the Department of Physics and Astronomy working toward her doctorate in physics, said the research team will work next on making electronic devices based on the spin reversal. "This will not only test its feasibility for applications, but also help determine the cause of the spin reversal, which is still unclear," she said.

Kawakami's lab is one of very few labs in the world that perform both the advanced material synthesis and pulsed laser measurements needed for experiments with FM/SC structures.

"Without the strong interplay between the materials development and optical measurements, the type of discovery we made probably would not have been possible," Kawakami said.

A new area of research, spintronics already has helped develop disk-drive read heads and non-volatile memory chips. Researchers believe spintronics also will make "instant-on" computers one day, as well as chips that can store and process data.


Contact: Iqbal Pittalwala
University of California - Riverside

Related biology technology :

1. Cellectricon and AstraZeneca - Partners in New High Throughput Ion Channel Drug Discovery Technology
2. Oncomine(TM) Again Key to Prostate Cancer Discovery
3. Nuevolution Announces Drug Discovery Alliance With Lexicon Pharmaceuticals
4. Pharmacopeia Advances Strategic Plan to Focus Resources on Development and Later-Stage Discovery Programs
5. WuXi PharmaTech (NYSE: WX) Appoints Dr. Peng Wang as VP of Discovery Biology
6. Genetic Engineering and Biotechnology News (GEN) Reports on Mass Spec in Drug Discovery
7. Applied Isotope Technologies will Exclusively Supply Biochemimarker(TM) Discovery Products for a Unique Pilot Study on Autism
8. Innovative and Forward-Thinking Experts to Deliver Keynote Presentations at IBCs 13th Annual Drug Discovery & Development of Innovative Therapeutics World Congress
9. Sinovac to Present at the Brean Murray, Carret & Co. All-Cap All-China Conference and the Roth China Discovery Tour 2008
10. Syndexa Pharmaceuticals Corporation and ChemDiv, Inc. Announce Discovery Collaboration
11. New Fragment-based Drug Discovery Platform Announced Between IOTA Pharmaceuticals Ltd, Cambridge (UK), and Beactica AB, Uppsala (Sweden)
Post Your Comments:
Related Image:
Discovery by UC Riverside physicists could enable development of faster computers
(Date:10/12/2015)... 12, 2015  Rebiotix Inc. today announced that ... its lead Microbiota Restoration Therapy (MRT) RBX2660 as ... Clostridium difficile (C diff) infection, a ... 29,000 deaths in the U.S. annually. 1 ... was founded to revolutionize the treatment of debilitating ...
(Date:10/12/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: ... developing and commercializing novel treatments in oncology, endocrinology and ... Turpin , the Company,s former Senior Vice President, Chief ... Quebec City office.  ... Officer of the Company commented, "After a comprehensive review, ...
(Date:10/12/2015)... 12, 2015 ... for enriched online experience --> ... print version for enriched online experience --> ... media alternative to print version for enriched online experience ... scientific, technical and medical information products and services, announced ...
(Date:10/12/2015)... ... October 12, 2015 , ... NeuMedics Inc., is a specialty biopharmaceutical company focused ... safely and chronically be administered as an eye drop, announced today it has been ... Clinic and taking place October 25th to October 28th at The Cleveland Clinic, Cleveland, ...
Breaking Biology Technology:
(Date:9/28/2015)... , Sept. 28, 2015 CLEAR, ... that its expedited traveler service is coming ... transforms travel, bringing a frictionless experience, serious ... "CLEAR offers our travelers an ... service," said Jim Smith , Executive ...
(Date:9/28/2015)... 28, 2015 The global ... USD 12.03 billion by 2020, growing at a CAGR ... as Backside Illumination (BSI) technique to improve picture quality ... period.      (Logo: , ... to reduce loss and, thus, reduce the noise interference ...
(Date:9/28/2015)... SAN JOSE, Calif. , Sept. 28, 2015 /PRNewswire/ ... developer of human interface solutions, today announced that Lenovo ... area touch fingerprint sensor, FS4202, for its latest smartphone, ... enables secure, password-free access to unlock the device and ... consumers. The feature-rich Natural ID FS4202 ...
Breaking Biology News(10 mins):