Navigation Links
Discovery by UC Riverside physicists could enable development of faster computers
Date:6/23/2008

RIVERSIDE, Calif. Physicists at UC Riverside have made an accidental discovery in the lab that has potential to change how information in computers can be transported or stored. Dependent on the "spin" of electrons, a property electrons possess that makes them behave like tiny magnets, the discovery could help in the development of spin-based semiconductor technology such as ultrahigh-speed computers.

The researchers were experimenting with ferromagnet/semiconductor (FM/SC) structures, which are key building blocks for semiconductor spintronic devices (microelectronic devices that perform logic operations using the spin of electrons). The FM/SC structure is sandwich-like in appearance, with the ferromagnet and semiconductor serving as microscopically thin slices between which lies a thinner still insulator made of a few atomic layers of magnesium oxide (MgO).

The researchers found that by simply altering the thickness of the MgO interface they were able to control which kinds of electrons, identified by spin, traveled from the semiconductor, through the interface, to the ferromagnet.

Study results appear in the June 13 issue of Physical Review Letters.

Experimental results:

The spin of an electron is represented by a vector, pointing up for an Earth-like west-to-east spin; and down for an east-to-west spin.

In the researchers' experiment with the FM/SC structures, both spin up and spin down electrons were allowed to travel from the semiconductor to the ferromagnet.

The researchers found that when the structure's MgO interface is very thin (less than two atomic layers), spin down electrons pass through to the ferromagnet, while spin up electrons are reflected back, leaving only spin up electrons in the semiconductor.

They also found that when the interface is thicker than six atomic layers, both spin up and spin down electrons are reflected back, leaving electrons with zero net spin in the semiconductor.

But the surprising result for the researchers was that at an intermediate thickness, ranging from two to six atomic layers, the selectivity of the interface completely changes.

"We see a dramatic and complete reversal in the spin of electrons that pass through the interface," said Roland Kawakami, an assistant professor of physics who led the research team. "This time, spin up electrons pass through while spin down electrons are reflected back to the semiconductor. In other words, the thickness of the MgO interface determines whether spin up or spin down electrons are allowed to pass through it."

According to his research team, such a "spin reversal" can be used to control current flow.

Significance of the discovery:

"Electron spins are oriented at random in an ordinary electric circuit, and, therefore, do not affect current flow," explained Yan Li, the first author of the research paper, who made the discovery. "But if spin is polarized, that is, aligned in one direction, you can manipulate the flow of current and the transport of information a feature that would be of great interest to the semiconductor industry. What is amazing is that only a couple of atomic layers of MgO can completely reverse the spin selection of the interface. This is unexpected because MgO is not a magnetic material."

Li, a graduate student in the Department of Physics and Astronomy working toward her doctorate in physics, said the research team will work next on making electronic devices based on the spin reversal. "This will not only test its feasibility for applications, but also help determine the cause of the spin reversal, which is still unclear," she said.

Kawakami's lab is one of very few labs in the world that perform both the advanced material synthesis and pulsed laser measurements needed for experiments with FM/SC structures.

"Without the strong interplay between the materials development and optical measurements, the type of discovery we made probably would not have been possible," Kawakami said.

A new area of research, spintronics already has helped develop disk-drive read heads and non-volatile memory chips. Researchers believe spintronics also will make "instant-on" computers one day, as well as chips that can store and process data.


'/>"/>

Contact: Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050
University of California - Riverside
Source:Eurekalert  

Related biology technology :

1. Cellectricon and AstraZeneca - Partners in New High Throughput Ion Channel Drug Discovery Technology
2. Oncomine(TM) Again Key to Prostate Cancer Discovery
3. Nuevolution Announces Drug Discovery Alliance With Lexicon Pharmaceuticals
4. Pharmacopeia Advances Strategic Plan to Focus Resources on Development and Later-Stage Discovery Programs
5. WuXi PharmaTech (NYSE: WX) Appoints Dr. Peng Wang as VP of Discovery Biology
6. Genetic Engineering and Biotechnology News (GEN) Reports on Mass Spec in Drug Discovery
7. Applied Isotope Technologies will Exclusively Supply Biochemimarker(TM) Discovery Products for a Unique Pilot Study on Autism
8. Innovative and Forward-Thinking Experts to Deliver Keynote Presentations at IBCs 13th Annual Drug Discovery & Development of Innovative Therapeutics World Congress
9. Sinovac to Present at the Brean Murray, Carret & Co. All-Cap All-China Conference and the Roth China Discovery Tour 2008
10. Syndexa Pharmaceuticals Corporation and ChemDiv, Inc. Announce Discovery Collaboration
11. New Fragment-based Drug Discovery Platform Announced Between IOTA Pharmaceuticals Ltd, Cambridge (UK), and Beactica AB, Uppsala (Sweden)
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Discovery by UC Riverside physicists could enable development of faster computers
(Date:2/23/2017)... ... February 23, 2017 , ... The Greater Gift ... new partnership with Compass Research . GGI's mission is to advance global health ... a child in need in honor of each clinical trial volunteer. The vision of ...
(Date:2/23/2017)... and SAN FRANCISCO , ... privately-held regenerative medicine company, and Beyond Type 1, a ... type 1 diabetes, today announced a grant from Beyond ... functional cure for type 1 and other insulin-requiring diabetes.  ... has been developing innovative stem cell-derived cell replacement therapies ...
(Date:2/22/2017)... ... February 22, 2017 , ... Kernel , ... Research Systems, LLC (KRS) clinical development program. KRS is a neurotechnology spin-out ... research and clinical applications. The terms of the transaction were not disclosed. ...
(Date:2/22/2017)... 22, 2017 Scientists propose in Nature ... damage in Gaucher and maybe other lysosomal storage diseases ... costs than current therapies. An international research ... , which also included investigators from the University of ... data Feb. 22. The study was conducted in mouse ...
Breaking Biology Technology:
(Date:2/2/2017)... Feb. 2, 2017   TapImmune, Inc. ... company specializing in the development of innovative peptide ... of cancer and metastatic disease, announced today it ... manufacturing of a second clinical lot of TPIV ... receptor alpha. The manufactured vaccine product will be ...
(Date:2/1/2017)... IDTechEx Research, a leading provider of independent market research, business ... new report, Sensors for Robotics: Technologies, Markets and Forecasts 2017-2027 ... ... Revenues of ... for Robotics: Technologies, Markets and Forecasts 2017-2027: Machine vision, force sensing ...
(Date:1/26/2017)...  Crossmatch, a leading provider of security and identity ... combatting fraud, waste and abuse in assistance operations around ... on Disaster Relief conference in Panama City ... and foreign assistance organizations throughout Latin America ... a largely unacknowledged problem in the foreign assistance and ...
Breaking Biology News(10 mins):