Navigation Links
Diamonds shine in quantum networks
Date:4/26/2011

When it comes to dreaming about diamonds, energy efficiency and powerful information processing aren't normally the thoughts that spring to mind. Unless, of course, you are a quantum physicist looking to create the most secure and powerful networks around.

Researchers at the University of Calgary and Hewlett Packard Labs in Palo Alto, California, have come up with a way to use impurities in diamonds as a method of creating a node in a quantum network. In addition to making powerful and secure networks, this discovery may also help sensitive measurements of magnetic fields and create new powerful platforms useful for applications in biology.

"Impurities in diamonds have recently been used to store information encoded onto their quantum state, which can be controlled and read out using light. But coming up with robust way to create connections needed to pass on signals between these impurities is difficult," says Dr. Paul Barclay, who recently moved to Calgary to start labs at the University of Calgary in the Institute for Quantum Information Science and at the National Institute for Nanotechnology in Edmonton.

"We have taken an important step towards achieving this," adds Barclay.

Barclay and colleagues Dr. Andrei Faraon, Dr. Kai-Mei Fu, Dr. Charles Santori and Dr. Ray Beausoleil from Hewlett Packard have published a paper on their research in the journal Nature Photonics.

Impurities in diamonds are responsible for slightly altering the material's colour, typically adding a slight red or yellow tint. The "NV center" impurity, which consists of a nitrogen atom and a vacancy in otherwise perfect diamond carbon lattice, has quantum properties that researchers are learning to exploit for useful applications.

In principle, individual particles of light, photons, can be used to transfer this quantum information between impurities, each of which could be a node in a quantum network used for energy efficient and powerful information processing. In practice, this is challenging to demonstrate because of the small size of the impurities (a few nanometers) and the experimental complexity that comes along with studying and controlling several nanoscale quantum systems at once.

Researchers at Hewlett Packard Labs and Barclay, who worked on this research at HP and is now a professor in the Department on Physics and Astronomy at the University of Calgary, have created photonic "microring resonators" on diamond chips. These microrings are designed to efficiently channel light between diamond impurities, and an on-chip photonic circuit connected to quantum impurities at other locations on the chip.

In future work, this microring will be connected to other components on the diamond chip, and light will be routed between impurities.

"This work demonstrates the important connection between fundamental physics, blue sky applications, and near-term problem solving. It involves many of the same concepts being pushed by companies such as HP, IBM, and Intel who are beginning to integrate photonics with computer hardware to increase performance and reduce the major problem of heat generation," says Barclay.


'/>"/>

Contact: Leanne Yohemas
leanne.yohemas@ucalgary.ca
403-540-6552
University of Calgary
Source:Eurekalert

Related biology technology :

1. A breakthrough toward industrial production of fluorescent nanodiamonds
2. Zinc oxide gives green shine to new photoconductors
3. OpenQ Announces openSpend for Physician Payment Sunshine Act Compliance
4. X-rays show why van Gogh paintings lose their shine
5. Light touch: Controlling the behavior of quantum dots
6. First tunable, noiseless amplifier may boost quantum computing, communications
7. Memoirs of a qubit: Hybrid memory solves key problem for quantum computing
8. Stanford: Quantum computing spins closer
9. U of T physicists squeeze light to quantum limit
10. Researchers measure elusive repulsive force from quantum fluctuations
11. Smallest ever quantum dots bring real world applications closer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:9/21/2017)... ... September 21, 2017 , ... Executives and ... world’s most progressive pharma and biotech organizations to do more clinical trials will ... biotech events in Q4. , DrugDev will demonstrate DrugDev Spark™, the world’s first ...
(Date:9/21/2017)... ... September 21, 2017 , ... ... today announced the election of Paul Hermes, Entrepreneur in Residence at Medtronic, Inc., ... Biorez has developed a proprietary, tissue-engineered scaffold for anterior cruciate ligament (ACL) reconstruction ...
(Date:9/20/2017)... Bell, PA and College Station, TX (PRWEB) , ... ... ... IPS-Integrated Project Services, LLC (IPS), a leading global provider of ... Manufacturing, Inc. the leading provider of prefabricated cleanrooms, today announced the unveiling ...
(Date:9/20/2017)... ... September 20, 2017 , ... Foresight Institute, a leading ... transformative technologies, announced the winners for the 2017 Foresight Institute Feynman Prizes.These are ... nanotechnology/molecular manufacturing. , Established in 1993 and named in honor of pioneer physicist ...
Breaking Biology Technology:
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced ... will feature emerging and evolving technology through ... Innovation Summits will run alongside the expo portion of ... sessions, panels and demonstrations focused on trending topics within ... advanced design and manufacturing event will take place June ...
(Date:4/11/2017)... Florida , April 11, 2017 ... a security technology company, announces the appointment of independent Directors ... Bendheim to its Board of Directors, furthering the company,s ... ... of NXT-ID, we look forward to their guidance and benefiting ...
Breaking Biology News(10 mins):