Navigation Links
Diamond defect interior design
Date:8/5/2014

WASHINGTON, D.C., August 5, 2014 By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. They describe their technique in a paper published in the journal Applied Physics Letters, from AIP Publishing.

David Awschalom, a physicist at the Institute for Molecular Engineering at the University of Chicago, and his colleagues study a technologically useful diamond defect called a nitrogen vacancy (NV) center. NV centers consist of a nitrogen atom adjacent to a vacant spot that replaces two carbon atoms in the diamond crystal, leaving an unpaired electron. Researchers can use a property of the unpaired electron known as its spin to store and transmit quantum information at room temperature.

Qubits and Quantum Sensors

NV centers are attractive candidates for qubits, the quantum equivalent of a classical computing bit. A single NV center can also be used for completely different applications, such as measuring temperature, as well as to image electric and magnetic fields on the nanometer-scale by placing it at the tip of a diamond-based scanning probe.

A primary obstacle to further exploiting NV centers for practical quantum computing and nanoscale sensing devices lies in the difficulty of placing the centers within what Awschalom calls the functional "sweet spots" of the devices. Another challenge is increasing the NV center density without sacrificing their spin lifetimes, which must remain long in order to extract the most useful information from the system.

Awschalom and his colleagues have developed a new way to create NV centers that could help overcome both these challenges.

That's the Spot

The key to the team's new approach is to create the nitrogen and vacancy defects separately, Awschalom said. First, the team grew a layer of nitrogen-doped crystal within a diamond film. The researchers kept the nitrogen layer extremely thin by reducing the growth rate of the film to approximately 8 nanometers/hour. The nanometer-scale nitrogen-doped layer constrains the possible location of the NV centers in the depth direction.

Secondly, the researchers created a mask to cover the film, leaving only pinprick holes. They blasted carbon ions through the holes to create vacancies and heated the diamond to make the vacancies mobile within the crystal. NV centers could form in the nitrogen-doped layer below where the holes were placed.

Using this approach the team successfully localized NV centers within a cavity approximately 180 nanometers across -- a volume small enough to be compatible with many diamond-based nanostructures used in sensing devices and experimental quantum information systems.

The localized NV centers could also hold a specific spin for longer than 300 microseconds. This so-called spin coherence time was an order of magnitude better than that achieved by other 3-D localization methods. The longer spin lifetime means the NV centers can detect smaller magnetic signals and hold quantum information for longer.

One of the team's goals for using their new technique is to measure the nuclear spins of hydrogen atoms one of the tiniest magnetic signals within a biological molecule. The research could reveal new insights into how important biological functions like photosynthesis work. "Our research impacts diverse fields of science and technology," Awschalom said. "Technological advancements always open new avenues of scientific research."


'/>"/>

Contact: Jason Socrates Bardi
jbardi@aip.org
240-535-4954
American Institute of Physics
Source:Eurekalert  

Related biology technology :

1. The Blazing Diamond and the Quantum Jewel: Two Major Discoveries in Quick Succession
2. Diamond imperfections pave the way to technology gold
3. An optical switch based on a single nano-diamond
4. Diamonds, nanotubes find common ground in graphene
5. Nanometer-scale diamond tips improve nano-manufacturing
6. Nanodiamonds cut through dirt to bring back bling to low-temperature laundry
7. Quantum computer built inside a diamond
8. Defective nanotubes turned into light emitters
9. SynCardia Total Artificial Heart Bridges Mother of Four with Congenital Heart Defect & Biventricular Heart Failure to Transplant
10. Americord Applauds Study on Stem Cell Therapy for Congenital Heart Defects
11. 100% Identification of Defective Blister Packs by Sepha's VisionsScan According to New Whitepaper
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Diamond defect interior design
(Date:2/6/2016)... ... February 06, 2016 , ... Contact:, Abby ... for Excellence in Education Sponsors Teacher Training Program , Bite of Science Dinner ... The Center for Excellence in Education (CEE) will sponsor a Bite of Science ...
(Date:2/5/2016)... On Thursday, February 11, 2-1-1 San ... health and disaster services, and the Community Information ... care coordination and service delivery for the community to ... to better connect service providers to the information they ... Diego has handled more than 2.5 million ...
(Date:2/4/2016)... ... February 04, 2016 , ... Morf Media ... announced an interactive FDA compliance training course, Writing Effective SOPs ... Society) accredited interactive course on Morf Playbook—now conveniently available on smartphones and PCs--provides ...
(Date:2/4/2016)... ... 04, 2016 , ... Shimadzu Scientific Instruments will showcase several ... and poster sessions, and present on the analysis of mycotoxins and medical cannabis ... to 10 at the Georgia World Congress Center in Atlanta, Georgia. , ...
Breaking Biology Technology:
(Date:2/3/2016)... , February 4, 2016 --> ... to SEK 1,351.5 M (105.0), up 1,187% compared with fourth quarter of ... amounted to SEK 517.6 M (loss: 30.0). Earnings per share ... activities was SEK 537.4 M (neg: 74.7). , ... , Revenues amounted to SEK 2,900.5 M (233.6), up 1,142% compared with ...
(Date:2/3/2016)... , Feb. 3, 2016 Vigilant Solutions announces ... Department in Missouri solved two ... reader (LPR) data from Vigilant Solutions. Brian ... in which the victim was walking out of a convenience store and witnessed ... next to his vehicle, striking his vehicle and leaving ...
(Date:2/2/2016)... 2016  BioMEMS devices deployed in hospitals ... medical screening and diagnostic applications, such as ... that facilitate and assure continuous monitoring without ... being bolstered through new opportunities offered by ... coupled with wireless connectivity and low power ...
Breaking Biology News(10 mins):