Navigation Links
'Designer molecules' being developed to fight disease
Date:6/12/2009

Researchers in the Department of Cardiovascular Sciences at the University of Leicester are developing a new way to make protein based drugs with potential applications in stroke, vascular inflammation, blood vessel formation, regenerative medicine and tissue engineering.

The research carried out by Shikha Sharma in Dr Nick Brindle's group in Department of Cardiovascular Sciences aims to allow researchers to rapidly make 'designer proteins' that can bind to disease causing molecules in the body.

Shikha Sharma said "There are millions of different proteins that are involved in carrying out numerous functions in the human body. Over time each protein has evolved to optimise its function. Disease could result if any of these fail to perform efficiently."

"By generating designer proteins in test tubes, we can produce molecules that have specific actions to control processes in the body. These proteins can be used to make drugs as a treatment for heart disease and cancer."

She said: "Whilst most drugs in current use are synthetic, these designer molecules are developed from natural proteins and are likely to have fewer side effects. Proteins perform a well defined but complex set of function in the body and protein therapeutic drugs can perform better when compared to some synthetic small molecule drugs that may have unwanted interactions within the body."

"Current methods to generate protein therapeutic are cumbersome and time consuming. At the University of Leicester, we have developed a novel method to revolutionise the way in which we produce these designer protein drugs. In principle this method mimics natural evolution to make new proteins but over a shorter timescale. Instead of taking millions of years, we can create new proteins in just a few weeks."

She said: "The fact that this new method utilizes a similar mechanism by which antibodies are generated, suggests the output from this method will be as robust and dynamic as the wide range of antibodies produced in our bodies to fight the rapidly evolving viruses in the environment."

Dr Brindle said: "Shikha has made great progress towards this new method, which holds the promise of new better drugs for a wide range of human and animal disease."

In addition to medicine, the method holds promise for a wide range of applications in the chemical, pharmaceutical, and agricultural industries, such as generating protein molecules to prevent uptake of toxins in crops or protein molecules for detection of environmental pollutants.

Shikha Sharma will be presenting her research at the Festival of Postgraduate Research which is taking place on Thursday 25th June in the Belvoir Suite, Charles Wilson Building, University of Leicester between 11.30am and 1pm. This event is open to the public and is FREE to attend.


'/>"/>

Contact: Shikha Sharma
ss349@le.ac.uk
01-162-525-898
University of Leicester
Source:Eurekalert

Related biology technology :

1. MultiVu Video Feed: Allergan, Inc. Partners With "Project Runway" Designer Kara Saun and Gen Art Fresh Faces In Fashion to Raise Awareness About Excessive Underarm Sweating
2. Celebrity Designer Ty Pennington to Host ADHD Experts on Call Program
3. New designer toxins kill Bt-resistant insect pests
4. Stem Cell Transplantation Research at The Cancer Center at Hackensack University Medical Center Aims to Develop Designer Transplants
5. Celebrity Designer Ty Pennington to Host 10th Annual ADHD Experts on Call Program
6. Angela Shen-Hsieh of Visual I
7. O Named to Board of Directors of AIGA: Oldest and Largest Membership Organization for Designers
8. Molecules line up to make the tiniest of wires
9. When proteins, antibodies and other biological molecules kiss, a new kind of biosensor can tell
10. When proteins, antibodies and other biological molecules kiss, a new kind of biosensor can tell
11. Foamix Signs Term Sheet to Acquire License to Organo-Boron Antifungal Molecules - Will Target the $11 Billion Dollars Fungal Infection Market
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/24/2016)... June 24, 2016 Epic Sciences unveiled ... cancers susceptible to PARP inhibitors by targeting homologous ... (CTCs). The new test has already been incorporated ... multiple cancer types. Over 230 clinical ... response pathways, including PARP, ATM, ATR, DNA-PK and ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... Calif. , June 23, 2016  The Prostate Cancer Foundation ... increasingly precise treatments and faster cures for prostate cancer. Members of the Class ... across 15 countries. Read More About the Class of ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published ... how a patient who developed lymphedema after being treated for breast cancer benefitted from ... the paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
Breaking Biology Technology:
(Date:6/21/2016)... , June 21, 2016 NuData Security announced ... new role of principal product architect and that ... director of customer development. Both will report directly ... officer. The moves reflect NuData,s strategic growth in ... to high customer demand and customer focus values. ...
(Date:6/9/2016)... attendance control systems is proud to announce the introduction of fingerprint attendance control software, ... employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - http://photos.prnewswire.com/prnh/20160609/377487 ...
(Date:6/2/2016)... June 2, 2016 The Department of ... awarded the 44 million US Dollar project, for the ... Plates including Personalization, Enrolment, and IT Infrastructure , ... the production and implementation of Identity Management Solutions. Numerous renowned ... Decatur was selected for the most ...
Breaking Biology News(10 mins):