Navigation Links
Delayed time zero in photoemission
Date:6/24/2010

This release is available in German.

When light is absorbed by atoms, the electrons become excited. If the light particles, so-called photons, carry sufficient energy, the electrons can be ejected from the atom. This effect is known as photoemission and was explained by Einstein more than hundred years ago. Until now, it has been assumed that the electron start moving out of the atom immediately after the impact of the photon. This point in time can be detected and has so far been considered as coincident with the arrival time of the light pulse, i.e. with "time zero" in the interaction of light with matter.

Using their ultra-short time measurement technology, physicists from the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics (MPQ), the Technische Universitaet Muenchen (TUM) and the Ludwig-Maximilians-Universitaet Munich (LMU) along with collaborators from Austria, Greece, and Saudi Arabia, have now tested this assumption.

The physicists fired pulses of near-infrared laser light lasting less than four femtoseconds (10-15 seconds) at atoms of the noble gas neon. The atoms were simultaneously hit by extreme ultraviolet pulses with a duration of 180 attoseconds, liberating electrons from their atomic orbitals. The attosecond flashes ejected electrons either from the outer 2p-orbitals or from the inner 2s-orbitals of the atom. With the controlled field of the synchronised laser pulse serving as an "attosecond chronograph", the physicists then recorded when the excited electrons left the atom.

Their measurements revealed that electrons from different atomic orbitals, although excited simultaneously, leave the atom with a small but measurable time delay of about twenty attoseconds. "One attosecond is one billionth of one billionth of a second, an unimaginable short interval of time. But after excitation by light one of the electrons leaves the atom earlier than the other. Hence we were able to show that electrons "hesitate" briefly before they leave an atom," explains Reinhard Kienberger, Professor for Experimental Physics (E 11) at the TUM and head of the Junior Research Group Attosecond Dynamics at the MPQ.

Determining the cause of this hesitation was also a challenge to the LAP theorists around Dr. Vladislav Yakovlev and his colleagues from the Vienna University of Technology (Austria) and the National Hellenic Research Foundation (Greece). Although they could confirm the effect qualitatively using complicated computations, they came up with a time offset of only five attoseconds. The cause of this discrepancy may lie in the complexity of the neon atom, which consists, in addition to the nucleus, of ten electrons. "The computational effort required to model such a many-electron system exceeds the computational capacity of today's supercomputers," explains Yakovlev.

Nevertheless, these investigations already point toward a probable cause of the "hesitation" of the electrons: the electrons interact not only with their atomic nucleus, but they are also influenced by one another. "This electron-electron interaction may then mean that it takes a short while before an electron that is shaken by the incident light wave is released by its fellow electrons and allowed to leave the atom," sais Dr. Martin Schulze, Postdoc at the LAP-Team.

"These to-date poorly understood interactions have a fundamental influence on electron movements in tiniest dimensions, which determine the course of all biological and chemical processes, not to mention the speed of microprocessors, which lie at the heart of computers", explains Ferenc Krausz. "Our investigations shed light on the electrons' interactions with one another on atomic scale". To this end, the fastest measuring technique in the world is just about good enough: the observed 20-attosecond time offset in the ejection times of electrons is the shortest time interval that has ever been directly measured.


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology technology :

1. Barr Confirms Patent Challenge of Prevacid(R) SoluTab(TM) Delayed-Release Orally Disintegrating Tablets, 15mg and 30mg
2. Sangui Bio Tech International Inc. Shareholders Meeting Delayed to Include FY 2008 Report
3. FDA Approves KAPIDEX(TM) (Dexlansoprazole) delayed release capsules for the Treatment of GERD
4. NAVIGATOR Shows Valsartan Delayed Progression to Type 2 Diabetes in At-Risk Cardiovascular Patients With Impaired Glucose Tolerance
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Delayed time zero in photoemission
(Date:6/27/2016)... ... 27, 2016 , ... Parallel 6 , the leading software as a ... Reach Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine ... team. , Using the CONSULT module, patients and physicians can schedule a face to ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
Breaking Biology Technology:
(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
(Date:3/23/2016)... WAKEFIELD, Massachusetts , March 23, 2016 ... kombiniert im Interesse erhöhter Sicherheit Gesichts- und ... Xura, Inc. (NASDAQ: MESG ... heute bekannt, dass das Unternehmen mit SpeechPro ... insbesondere aus der Finanzdienstleistungsbranche, wird die Möglichkeit ...
Breaking Biology News(10 mins):