Navigation Links
Damaged Tissues and Organs Could be Repaired With New Scaffolding Technique
Date:7/16/2013

Cambridge, MA (PRWEB) July 16, 2013

Damaged organs could be repaired in the near future with devices enabled by a manufacturing technique used today for components in mobile phones and other consumer electronics. Researchers at Draper Laboratory and MIT demonstrated a prototype device using this approach under contract to the National Institutes of Health (NIH). The long term goal for the research is to develop implantable, fully functioning artificial tissues and organs.

In an early view article published online by Advanced Materials, Lisa E. Freed, the principal investigator for the project at Draper Laboratory and MIT, and Martin E. Kolewe, a post doctoral associate at MIT, adapted a semi-automated layer-by-layer assembly method commonly used to build integrated circuits in the electronics packaging industry to instead stack porous, flexible, biodegradable elastomer sheets to form three dimensional (3-D) scaffolds on which tissues can be grown. The breakthrough allows researchers to build controlled 3-D pore networks that guide cells to grow in precise patterns, as is seen in highly specialized tissues like heart and skeletal muscle.

Cells in a human heart rely on a variety of spatial and chemical cues to form the hierarchical organization that results in a complete and functional organ. “Function follows form, especially when we try to create artificial tissue,” Kolewe said, explaining that the researchers first identified key structural cues that could guide specific cell growth patterns, and then replicated these cues in their scaffolds to grow specific tissue architectures. The researchers were able to grow contractile heart tissue from rat heart cells using their 3-D scaffolds.

Before this work, researchers intent on growing human tissues lacked the ability to precisely control the 3-D pore structure of scaffolds in many types of polymers, instead relying on 2-dimensional templates, random 3D pore structures, or amorphous gelatin. While relatively simple organs like bladders can be grown using such methods, for more complex tissues like the heart or the brain a 3-D structure to guide specialized cell growth patterns is necessary. “Scaffolds that guide 3-D cellular arrangements can enable the fabrication of tissues large enough to be of clinical relevance, and now we have developed a new tool to help do this,” Freed said.

Freed explains that this work is driven by “the shortage of human tissue in medicine,” explaining that this technology could be implemented to facilitate the growth or regrowth of specific tissues in people with congenital defects or traumatic damage to their tissues or organs. The flexible scaffolds could be implanted at the site of the injury to guide cellular growth, afterwards dissolving harmlessly into the body. Biomedical researchers can also take advantage of these scaffolds for purposes including studying tissue development and identifying key cues that prompt a blob of heart cells to grow into a fully functional, beating heart muscle, for example.

The new design paradigm of controlling the network pore structure marks a huge improvement on the current methods used to grow human tissues, and will enable researchers to explore innovative new treatments and research possibilities.

“This novel fabrication technology highlights how the NIH’s investment in regenerative medicine may soon improve the lives of patients with damaged or diseased organs,” noted Martha Lundberg, a program director at the NIH’s National Heart, Lung, and Blood Institute (NHLBI), which supported this study. “This work could be a potentially significant advance in tissue engineering that will lead to new tissue-based therapies aimed at restoring organ function.”

The work was funded by a grant to MIT from the NHLBI of the NIH under award number R01HL107503. Its content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Other authors of the Advanced Materials paper were Hyoungshin Park and Caprice Gray from Draper and Xiaofeng Ye and Robert Langer from MIT. The authors dedicated the paper to the memory of MIT police officer Sean Collier.

Draper Laboratory

Draper Laboratory, which celebrates 80 years of service to the nation in 2013, is a not-for-profit, engineering research and development organization dedicated to solving critical national problems in national security, space systems, biomedical systems, and energy. Core capabilities include guidance, navigation and control; miniature low power systems; highly reliable complex systems; information and decision systems; autonomous systems; biomedical and chemical systems; and secure networks and communications.

http://www.draper.com

Read the full story at http://www.prweb.com/releases/2013/7/prweb10921218.htm.


'/>"/>
Source: PRWeb
Copyright©2012 Vocus, Inc.
All rights reserved

Related biology technology :

1. Black Mold Eats Away the Properties in an NYC Storage Facility, My Cleaning Products Suggests Use of Molderizer to Save Damaged Items
2. New Stem Cell Activating Anti-aging Serums Offer Hope for Damaged Skin
3. Dr. Rongxiang Xu, Owner of Patented Technology to Regenerate Damaged Organs, Announces Lawsuit Against 2012 Nobel Laureate Dr. Shinya Yamanaka
4. Dr. Rongxiang Xu, Patent Owner of Damaged Organ Regeneration, a Top Priority Addressed in the 2013 Presidential State of The Union, Files Lawsuit Against 2012 Nobel Laureate Dr. Yamanaka for Deception
5. Dr. Rongxiang Xu, Patent Owner of Damaged Organ Regeneration, a Top Priority Addressed in the 2013 Presidential State of The Union, Files Lawsuit Against Dr. Yamanaka for Deception
6. New method for producing precursor of neurons, bone and other important tissues from stem cells
7. Precisely engineering 3-D brain tissues
8. Designing interlocking building blocks to create complex tissues
9. New MRI method fingerprints tissues and diseases
10. Findings could be used to engineer organs
11. Microfabrication breakthrough could set piezoelectric material applications in motion
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... NEWARK, Del. , March 29, 2017 /PRNewswire/ ... company, and W. L. Gore & Associates, ... a collaborative research agreement whereby the two companies will ... device technologies that provide protection from immune rejection. ... been developing innovative stem cell-derived cell replacement therapies with ...
(Date:3/29/2017)... TORONTO , March 29, 2017 /PRNewswire/ -  GeneNews Limited ... of BreastSentry™ , a new risk stratification test for ... reference lab, Innovative Diagnostics Laboratory ("IDL"). BreastSentry incorporates a blood-based ... five-year and lifetime risk for developing breast cancer.   ... BreastSentry measures ...
(Date:3/29/2017)... , March 29, 2017 The Global Microfluidic ... report is a specialized and comprehensive study on the existing state ... America , Europe and ... Middle East and Africa . ... Browse 172 Tables and ...
(Date:3/28/2017)... ... 2017 , ... NetDimensions announced today that Scandinavian Health Limited ... management for consistent implementation of standards and regulatory requirements across SHL companies worldwide. ... improve and streamline their training and employee development programs, which are critical to ...
Breaking Biology Technology:
(Date:3/16/2017)... 16, 2017 CeBIT 2017 - Against identity fraud with DERMALOG solutions ... ... Used combined in one project, multi-biometric solutions provide a crucial contribution against ... Used combined in one project, ... ...
(Date:3/7/2017)... Brandwatch , the leading social intelligence company, today announces that ... uncover insights to support its reporting, help direct future campaigns, and ... youth charity will be using Brandwatch Analytics social listening and analytics ... of the topics and issues that are a priority for its ... "Until recently ...
(Date:3/2/2017)... March 2, 2017 Summary This ... understand Merck KGaA and its partnering interests and activities ... Description The Partnering Deals and Alliance since ... activity of one of the world,s leading life sciences ... upon purchase to ensure inclusion of the most up ...
Breaking Biology News(10 mins):