Navigation Links
DOE JGI Director Eddy Rubin highlights the genomics of plant-based biofuels in the journal Nature
Date:8/13/2008

WALNUT CREEK, CAGenomics is accelerating improvements for converting plant biomass into biofuelas an alternative to fossil fuel for the nation's transportation needs, reports Eddy Rubin, Director of the U.S. Department of Energy Joint Genome Institute (DOE JGI), in the August 14 edition of the journal Nature. In "Genomics of cellulosic biofuels," Rubin lays out a path forward for how emerging genomic technologies will contribute to a substantially different biofuels future as compared to the present corn-based ethanol industryand in part mitigate the food-versus-fuel debate. The Nature Review is available for download (by subscription) at http://www.nature.com/.

"The Apollo moon shot and the Human Genome Project rallied support for massive R&D efforts that created the capabilities to overcome obstacles that were not contemplated at the outset of these initiatives," says Rubin. "Similarly, today's barriers to improving biofuels are significant, but genetics and genomics can catalyze progress towards delivering, in the not-too-distant future, economically-viable and more socially acceptable biofuels based on lignocellulose."

While Rubin acknowledges that this strategy is in its infancy, rapid progress is being made.

"Over the past 10,000 years, wild plant species were selected for their desirable traits resulting in today's highly productive food crops. We simply don't have thousands of years in the face of the energy and climate challenges, so by applying the power of genomics to these problems, we are seeking to speed up the domestication of energy crops and the technologies for converting them to suitable biofuels as a more carbon-neutral approach to meeting part of our transportation needs."

In the Nature Review, Rubin describes the processes entailed in biofuel production from lignocellulose: the harvesting of biomass, pretreatment and saccharification, which results in the deconstruction of cell wall polymers into component sugars, and then the conversion of those sugars into biofuels through fermentation. Each step, he says, offers an opportunity for genomics to play a significant role.

"With the data that we are generating from plant genomes we can home in on relevant agronomic traits such as rapid growth, drought resistance, and pest tolerance, as well as those that define the basic building blocks of the plants cell wallcellulose, hemicellulose and lignin. Biofuels researchers are able to take this information and design strategies to optimize the plants themselves as biofuels feedstocksaltering, for example, branching habit, stem thickness, and cell wall chemistry resulting in plants that are less rigid and more easily broken down."

For microbial biomass breakdown, Rubin says that many candidates have already been identified. These include Clostridia species for their ability to degrade cellulose, and fungi that express genes associated with the decomposition of the most recalcitrant features of the plant cell wall, lignin, the phenolic "glue" that imbues the plant with structural integrity and pest resistance. The white rot fungus Phanerochaete chrysosporium produces unique extracellular oxidative enzymes that effectively degrade lignin by gaining access through the protective matrix surrounding the cellulose microfibrils of plant cell walls.

Another fungus, the yeast Pichia stipitis, ferments the five-carbon "wood sugar" xylose abundant in hardwoods and agricultural harvest residue. Rubin says that Pichia's recently sequenced genome has revealed insights into the metabolic pathways responsible for this process, guiding efforts to optimize this capability in commercial production strains. Pathway engineering promises to produce a wider variety of organisms able to ferment the full repertoire of sugars derived from cellulose and hemicellulose and tolerate higher ethanol concentrations to optimize fuel yields.

Rubin also touches on the emerging technology of metagenomicscharacterizing, without the need for laboratory culture, the metabolic profile of organisms residing in an environmental samplefor the identification of enzymes suitable for industrial-scale biofuel production.

"Using this prospecting technique, we can survey the vast microbial biodiversity to gain a better picture of the metabolic potential of genes and how they can be enlisted for the enzymatic deconstruction of biomass and subsequent conversion to high energy value fuels."

As an example, Rubin cites an analysis of the hindgut contents of nature's own bioreactor, the termite, (published in Nature (450, 560-565 [22 November 2007]), which has yielded more than 500 genes related to the enzymatic deconstruction of cellulose and hemicellulose.

The Nature Review goes on to list the feedstock genomes, microbial "biomass degraders," and "fuel producers" completed or in progress. These include the first tree genome completedthat of the poplar Populus trichocarpa and other plants in the sequencing queue, such as soybean, switchgrass, sorghum, eucalyptus, cassava, and foxtail millet. In addition, Rubin points to oil-producing algae as an alternative source for biodiesel productionwith the alga Chlamydomonas reinhardtii, as just one of several algal species that has been characterized for their ability to efficiently capture and convert sunlight into energy.

"Given the daunting magnitude of fossil fuel used for transportation, we will likely have to draw from several different sources to make an appreciable impact with cellulosic biofuels, all of which will in some significant way will be informed by genomics," says Rubin.

"Toward this end, rapid new sequencing methods and the large-scale genomics previously applied to sequencing the human genome are being exploited by bioenergy researchers to design next-generation biofuels, higher-chain alcohols and alkanes, with higher energy content than petroleum and more adaptable to existing infrastructure."


'/>"/>

Contact: David Gilbert
degilbert@lbl.gov
925-296-5643
DOE/Joint Genome Institute
Source:Eurekalert

Related biology technology :

1. Third Security, LLC Hires Two New Managing Directors
2. Dr. Amit Dhawan Promoted to Medical Director for The Mattson Jack Group
3. Codexis Appoints Singapore Laboratories Managing Director
4. NanoLogix Inc. Appoints Director of IP and Makes Progress on Rapid Anthrax Detection
5. NeurogesX Appoints New Director to the Board
6. Boston Scientific Announces Election of Ray Elliott to Its Board of Directors
7. The Pittsburgh Life Sciences Greenhouse Elects Four New Members to Its Board of Directors
8. MichBio Issues 2007/8 Michigan Life Sciences Directory and Resources Guide
9. Keryx Biopharmaceuticals, Inc. Announces Appointment of Michael P. Tarnok to Board of Directors
10. Stiefel Laboratories Appoints Two New Members to Board of Directors
11. Founder of ILEX Oncology and Triton Biosciences, Richard Love, Joins Board of Directors of Cell Therapeutics, Inc. (CTI)
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... CA (PRWEB) , ... October ... ... a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today ... of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration ...
(Date:10/10/2017)... 2017 International research firm Parks Associates announced today ... the TMA 2017 Annual Meeting , October 11 in ... home security market and how smart safety and security products impact the ... Parks Associates: Smart Home Devices: ... "The residential security market has experienced ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon ... awards honoring scientists who have made outstanding contributions to analytical chemistry ... Pittcon 2018, the world’s leading conference and exposition for laboratory science, which will ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board ... Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has been selected ... member of the winning team for the 2015 Breakthrough Prize in Fundamental physics for ...
Breaking Biology Technology:
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... 2017   EyeLock LLC , a leader of ... States Patent and Trademark Office (USPTO) has issued U.S. ... of an iris image with a face image acquired ... company,s 45 th issued patent. ... given the multi-modal biometric capabilities that have recently come ...
(Date:3/30/2017)... , March 30, 2017 The research ... system for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D ... a new realm of speed and accuracy for use in identification, ... an affordable cost. ... ...
Breaking Biology News(10 mins):