Navigation Links
DNA motor 'walks' along nanotube, transports tiny particle
Date:12/17/2013

WEST LAFAYETTE, Ind. - Researchers have created a new type of molecular motor made of DNA and demonstrated its potential by using it to transport a nanoparticle along the length of a carbon nanotube.

The design was inspired by natural biological motors that have evolved to perform specific tasks critical to the function of cells, said Jong Hyun Choi, a Purdue University assistant professor of mechanical engineering.

Whereas biological motors are made of protein, researchers are trying to create synthetic motors based on DNA, the genetic materials in cells that consist of a sequence of four chemical bases: adenine, guanine, cytosine and thymine. The walking mechanism of the synthetic motors is far slower than the mobility of natural motors. However, the natural motors cannot be controlled, and they don't function outside their natural environment, whereas DNA-based motors are more stable and might be switched on and off, Choi said.

"We are in the very early stages of developing these kinds of synthetic molecular motors," he said.

New findings were detailed in a research paper published this month in the journal Nature Nanotechnology.

In coming decades, such molecular motors might find uses in drug delivery, manufacturing and chemical processing.

The new motor has a core and two arms made of DNA, one above and one below the core. As it moves along a carbon-nanotube track it continuously harvests energy from strands of RNA, molecules vital to a variety of roles in living cells and viruses.

The Nature Nanotechnology paper was authored by graduate students Tae-Gon Cha, Jing Pan and Haorong Chen; former undergraduate student Janette Salgado; graduate student Xiang Li; Chengde Mao, a professor of chemistry; and Choi.

"Our motors extract chemical energy from RNA molecules decorated on the nanotubes and use that energy to fuel autonomous walking along the carbon nanotube track," Choi said.

The core is made of an enzyme that cleaves off part of a strand of RNA. After cleavage, the upper DNA arm moves forward, binding with the next strand of RNA, and then the rest of the DNA follows. The process repeats until reaching the end of the nanotube track.

Researchers used the motor to move nanoparticles of cadmium disulfide along the length of a nanotube. The nanoparticle is about 4 nanometers in diameter.

The researchers combined two fluorescent imaging systems to document the motor's movement, one in the visible spectrum and the other in the near-infrared range. The nanoparticle is fluorescent in visible light and the nanotubes are fluorescent in the near-infrared.

The motor took about 20 hours to reach the end of the nanotube, which was several microns long, but the process might be sped up by changing temperature and pH, a measure of acidity.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert  

Related biology technology :

1. Newly discovered mechanism propels micromotors
2. Affordable Stepper Motor Stage, Model M-406 from Physik Instrumente PI
3. PI USA Offers High-End Compact Rotation Stage; Delivers High Performance and Precision via Air Bearings and Torque Motor
4. Motorized Compact Linear Translation Stage for Micropositioning Applications by PI Physik Instrumente
5. Compact Precision Rotation Stage with High-Speed Ultrasonic Motor Introduced by PI
6. Fast Motorized Fiber-Positioner for Automated Alignment Applications in Data-Communication, Photonics Offered by PI
7. New Vacuum Catalog, UHV Compatible Motorized Positioners, Linear Stages, Rotary Stages, Beamline Instrumentation Released by PI miCos
8. Piezo Positioning Stage Based on High-Speed Ultrasonic Motor Introduced by PI (Physik Instrumente)
9. Precision Positioning System Uses Miniaturezed Piezo Linear Motor: LPS-24 Linear Stage by PI
10. Scientists design, control movements of molecular motor
11. Linear Motor Driven Precision Linear Actuator from IntelLiDrives
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
DNA motor 'walks' along nanotube, transports tiny particle
(Date:7/17/2017)... Iowa (PRWEB) , ... July 17, 2017 , ... ... component of its long-standing innovation strategy. A website (openinnovation.pioneer.com) dedicated to ... five strategic areas – trait discovery, plant breeding, enabling technologies, biologicals and digital ...
(Date:7/16/2017)... ... 16, 2017 , ... OHAUS Corporation, a leading worldwide manufacturer ... new line of Extreme Environment Shakers today. , Extreme Environment Shakers , OHAUS ... optimal cell growth such as cell cultures, solubility studies and extraction procedures. These ...
(Date:7/14/2017)... ... , ... Sonic Manufacturing Technologies is proud to be an ... system on its roof top. “We will be independent of the grid and ... The company’s proud history of social responsibility and participation in the preservation of ...
(Date:7/14/2017)... ... July 13, 2017 , ... LGC Maine Standards ... US FDA 510 (k) clearance for use on Siemens Sysmex® CS-2500 System analyzers. ... D-Dimer kit, prepared using the CLSI EP06-A “equal delta” sample preparation, offers five ...
Breaking Biology Technology:
(Date:4/17/2017)... 17, 2017 NXT-ID, Inc. (NASDAQ: NXTD ... filing of its 2016 Annual Report on Form 10-K on Thursday ... ... available in the Investor Relations section of the Company,s website at ... website at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, a ... authentication solutions, today announced that it has been ... Research Projects Activity (IARPA) to develop next-generation Presentation ... "Innovation has been a driving force ... program will allow us to innovate and develop ...
(Date:4/11/2017)... 11, 2017 NXT-ID, Inc. (NASDAQ:   ... announces the appointment of independent Directors Mr. Robin D. ... Board of Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , ... forward to their guidance and benefiting from their considerable expertise ...
Breaking Biology News(10 mins):