Navigation Links
Cornell bioengineers discover the natural switch that controls spread of breast cancer cells
Date:1/23/2013

ITHACA, N.Y. With a desire to inhibit metastasis, Cornell biomedical engineers have found the natural switch between the body's inflammatory response and how malignant breast cancer cells use the bloodstream to spread. (PLOS ONE, Jan. 23, 2013)

Pro-inflammatory signaling molecules in blood called cytokines constitute a "switch" that induces the mechanism by which breast cancer cells "roll" and adhere to the blood vessel surface. The cancer cells eventually stick to the vessel and infiltrate it.

The laboratory of Michael R. King, Cornell professor of biomedical engineering has developed a flow chamber that mimics an inflamed endothelium (the blood vessel wall) and has used this to investigate the metastatic cascade.

In understanding the adhesive behavior of a particularly metastatic cell line, King and Yue Geng, graduate student in the field of biomedical engineering, discovered unexpectedly that these cells were unable to interact with selectins (receptor sites on the endothelium) a key step in the metastatic cascade. This mechanism is identical to how white blood cells infiltrate blood vessels to reach the site of inflammation.

Cancer has long been associated with inflammation the body's natural defense mechanism and now the researchers have demonstrated a definitive link. They found that the presence of pro-inflammatory molecules the cytokines IL-6 and TNF-alpha enable the malignant, hormone therapy-resistant breast cancer cells used in the study to adhere to the endothelial wall, leading to metastasis.

Before the cancer has spread, tumor cells first encounter IL-6 and TNF-alpha in the primary tumor's microenvironment. These cytokines induce proliferation and aggregation of cancer cells, triggering other cancer cells to secrete more cytokines, resulting in a positive feedback loop.

The bioengineers went on to design several different cell culture setups to culture cancer cells with human plasma, IL-6 and TNF-alpha to test their hypotheses that inflammatory molecules in blood may induce adhesion capability. All of them promoted breast cancer cell metastatic behavior.

To confirm the results, the scientists used more sophisticated, real-life 3-D tumor spheroids, which are more physiologically accurate. In fact, the spheroid tumor cells exhibited the most significant increase in the interaction between the cancer cells and the blood vessel. They also treated some of the samples with a known anti-inflammatory drug called Metformin, which blocks IL-6, and they found that these samples were not able to metastasize further accentuating their results.

Improving cancer treatment to fight metastasis via the bloodstream will depend on undoing this roll-and-stick mechanism of cancer cells, Geng says. The Cornell research could form the basis for immunotherapies to block the ligand-selectin binding of cancer cells, by first counteracting the inflammatory cytokines that, it seems, set the whole process in motion.


'/>"/>

Contact: John Carberry
jjc338@cornell.edu
607-255-5353
Cornell University
Source:Eurekalert

Related biology technology :

1. Biscayne Pharmaceuticals Closes $1.5 Million Financing To Advance Recent Discoveries Of Pioneering Endocrine Drug Researcher
2. Rice University discovers that graphene oxide soaks up radioactive waste
3. New Way to Kill Bed Bugs Discovered; Bed Bug Bully Says Use of Bed Bug Spray Remains the Better Technique to Kill the Pests
4. MIT researchers discover a new kind of magnetism
5. Automated design for drug discovery
6. Japan Bioinformatics Announces Study on Leading Mapping Tools for DNA Mutation Discovery
7. Research discovery could revolutionize semiconductor manufacture
8. Stem Cell Pioneer Recognized for 20 Years of Discovery and Innovation
9. Discovery could hold the key to super-sensory hearing
10. Sweet diesel! Discovery resurrects process to convert sugar directly to diesel
11. New discovery shows promise in future speed of synthesizing high-demand nanomaterials
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/12/2017)... ... October 12, 2017 , ... ... States multicenter, prospective clinical study that demonstrates the accuracy of the FebriDx® ... identifying clinically significant acute bacterial and viral respiratory tract infections by testing ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. 11, ... Research, London (ICR) and University of ... SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma (MM), ... nine . The University of Leeds ... funded by Myeloma UK, and ICR will perform the testing ...
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
Breaking Biology Technology:
(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
(Date:3/24/2017)... 2017 The Controller General of Immigration from Maldives ... Algeen have received the prestigious international IAIR Award for the most ... Reading ... Maldives ... Abdulla Algeen (small picture on the right) have received the IAIR award ...
(Date:3/23/2017)... March 23, 2017 The report "Gesture Recognition and Touchless ... and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market is ... of 29.63% between 2017 and 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):