Navigation Links
Controlling magnetism with electric fields
Date:8/23/2011

An international team of researchers from France and Germany has developed a new material which is the first to react magnetically to electrical fields at room temperature. Previously this was only at all possible at extremely low and unpractical temperatures. Electric fields are technically much easier and cheaper to produce than magnetic fields for which you need power guzzling coils. The researchers have now found a way to control magnetism using electric fields at "normal" temperatures, thus fulfilling a dream. The high-precision experiments were made possible in a highly specialized measuring chamber built by the Ruhr-Universitt Bochum at the Helmholtz Centre in Berlin. The research group from Paris and Berlin with the participation of RUB scientists reported on their findings in "Nature Materials".

ALICE in wonderland

The "multiferroic" property of the new material was demonstrated in the measuring chamber ALICE so called because, like "Alice in wonderland" it can look beneath the surface of things. Here a specific range of X-rays is used to study magnetic nanostructures. The measuring chamber, developed by Bochum's physicists and funded by the Federal Ministry for Education and Research, has successfully been in use since 2007 at the electron storage ring BESSY II in Berlin. With the newly discovered material properties of BaTiO3 (barium-titanium oxide), in future it will be possible to design components such as data storage and logical switches that are controlled with electric instead of magnetic fields.

Ferromagnetic and ferroelectric properties

Ferromagnetic materials such as iron can be affected by magnetic fields. All atomic magnetic dipoles are aligned in the magnetic field. In ferroelectric materials, electric dipoles - two separate and opposite charges - replace the magnetic dipoles, so they can be aligned in an electric field. In very rare cases, so-called multiferroic materials respond to both fields - magnetic and electric.

Multiferroic at room temperature

The researchers produced this multiferroic material by vapour coating ultra-thin ferromagnetic iron layers onto ferroelectric bismuth-titanium oxide layers. In so doing, they were able to establish that the otherwise non-magnetic ferroelectric material becomes ferromagnetic at the interface between the two ferromagnetic layers. Thus, the researchers have developed the world's first multiferroic material that reacts to both magnetic and electric fields at room temperature.

Magnetic X-ray scattering throws light on new control mechanism

The scientists demonstrated this interfacial magnetism using the spectroscopic method "X-ray magnetic circular dichroism". In this method, the polarisation of the X-rays is affected by magnetism in a way which is similar to the famous "Faraday effect" in optics. X-ray magnetic circular dichroism has the advantage that it can be applied to every single element in the material investigated. With this method, the researchers were able to show that all three elements in the ferroelectric material - bismuth, oxygen and titanium - react ferromagnetically at the interface to iron, although these atoms are otherwise not magnetic.

An extremely sophisticated method

"The method of X-ray magnetic circular dichroism is highly complex", said Prof. Dr. Hartmut Zabel, Chair of Experimental Physics at the RUB. The measuring chamber ALICE combines X-ray scattering with X-ray spectroscopy. "This is an extremely sophisticated and very sensitive method", explained Prof. Zabel. "The high precision of the detectors and all the goniometers in the chamber led to the success of the experiments conducted by the international measuring team."


'/>"/>

Contact: Professor Dr. Hartmut Zabel
hartmut.zabel@rub.de
49-234-322-3649
Ruhr-University Bochum
Source:Eurekalert

Related biology technology :

1. Light touch: Controlling the behavior of quantum dots
2. Controlling the size of nanoclusters
3. China Biologic Products Enters Into Agreement to Acquire 90% Controlling Interest in Chongqing Dalin Biologic Technologies Co., Ltd.
4. Light-speed nanotech: Controlling the nature of graphene
5. China Biologic Products Completes Acquisition of 90% Controlling Interest in Chongqing Dalin Biologic Technologies Co., Ltd.
6. A recipe for controlling carbon nanotubes
7. Engineers produce how-to guide for controlling the structure of nanoparticles
8. United States Securities and Exchange Commission Declares Effective Registration Statement for NeoStems Acquisition of China Biopharmaceuticals Holdings, Inc. and a Controlling Interest in Leading Chinese Pharmaceutical Company; Meeting of Each Com
9. Graphite mimics irons magnetism
10. Powerful new way to control magnetism
11. ORNL theorist part of team that discovers unexpected magnetism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... October 11, 2017 , ... The ... context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The ... transformative for performing systematic gain-of-function studies. , This complement to loss-of-function studies, ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for its ... 2018 in San Francisco, CA. The Summit brings together current and former FDA office ... directors and government officials from around the world to address key issues in device ...
(Date:10/11/2017)... , Oct. 11, 2017  VMS BioMarketing, a leading provider ... nationwide oncology Clinical Nurse Educator (CNE) network, which will launch ... for communication among health care professionals to enhance the patient ... office staff, and other health care professionals to help women ... cancer. ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving ... those living in larger cities are affected by air pollution related diseases. , That ... countries globally - decided to take action. , “I knew I had to take ...
Breaking Biology Technology:
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
(Date:4/6/2017)... Forecasts by Product Type (EAC), ... End-Use (Transportation & Logistics, Government & Public Sector, Utilities ... Generation Facility, Nuclear Power), Industrial, Retail, Business Organisation (BFSI), ... you looking for a definitive report on the $27.9bn ... ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
Breaking Biology News(10 mins):