Navigation Links
Controlling friction by tuning van der Waals forces
Date:7/19/2013

This news release is available in German.

For a car to accelerate there has to be friction between the tire and the surface of the road. The amount of friction generated depends on numerous factors, including the minute intermolecular forces acting between the two surfaces in contact so-called van der Waals forces. The importance of these intermolecular interactions in generating friction has long been known, but has now been demonstrated experimentally for the first time by a research team led by Physics Professor Karin Jacobs from Saarland University and Professor Roland Bennewitz from the Leibniz Institute for New Materials (INM). Interestingly, the research team has shown that the friction acting at a material surface is influenced by the structure of the sub-surface layers.

Friction is an everyday phenomenon that is sometimes desirable (enabling cars to accelerate) and sometimes not (friction in the form of vehicle drag and friction in the engine and transmission system increase the car's energy consumption). For many scientists and engineers, the ability to control friction is therefore right at the top of their wish list. A possible approach to controlling friction has just been published by researchers at Saarland University and INM. They have discovered that frictional force is affected by the composition of the materials beneath the surface.

The work carried out by the Saarbrcken scientists involved taking a closer look at the intermolecular forces acting between two materials. In order to be able to vary these forces, the researchers worked with polished, single-crystal silicon wafers. 'The wafers are covered with silicon dioxide layers of different thicknesses and are similar to those used in the semiconductor industry,' explained Karin Jacobs, Professor of Experimental Physics at Saarland University.

Jacobs' team precisely measured the friction between silicon dioxide (SiO2) layers of different thicknesses and the 200-nm tip of an atomic force microscopy probe by carefully scanning the tip across the wafer surface. What the physicists discovered was surprising: although the uppermost layer of the surface always consisted purely of SiO2, the tip of the atomic force microscope experienced different frictional forces depending on the thickness of the silicon dioxide layer. 'The thinner the oxide layer, the greater the friction,' said Jacobs. The study found that the frictional forces associated with the wafers differed by as much as 30 per cent depending on the thickness of the SiO2 layer. The effect was also observed when the silicon wafers were covered with a water-repellent monolayer of silane molecules (long-chain hydrocarbons).

'The results of our study have significant implications for many practical applications,' said Professor Jacobs. 'As the strength of the van der Waals forces depends on the composition of a material to depths of up to 100 nanometres, carefully designing the layer structure at the surface of a material can reduce friction. This gives us another approach to controlling friction in addition to the established use of lubricants.'


'/>"/>

Contact: Karin Jacobs
k.jacobs@physik.uni-saarland.de
Saarland University
Source:Eurekalert

Related biology technology :

1. Controlling magnetic clouds in graphene
2. Controlling your computer with your eyes
3. Study improves understanding of surface molecules in controlling size of gold nanoparticles
4. Triboelectric generator produces electricity by harnessing friction between surfaces
5. Slippery when stacked: NIST theorists quantify the friction of graphene
6. Penn and Brown researchers demonstrate earthquake friction effect at the nanoscale
7. Strain tuning reveals promise in nanoscale manufacturing
8. Oxford Performance Materials and Biomet Microfixation Join Forces
9. Digital Science & SciBite Join Forces to Harness Big Data for Life Sciences
10. Sanofi Oncology and Colon Cancer Coalition Join Forces to Raise Awareness of Colorectal Cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... Berkeley, CA (PRWEB) , ... January 19, 2017 ... ... the delivery of product vigilance software to leading biopharmaceutical and medical device manufacturers ... Mail is a fully 21 CFR Part 11-compliant email client designed to provide ...
(Date:1/19/2017)... (PRWEB) , ... January 18, 2017 , ... ... for tech innovators, engineers, and scientists from around the world, was today awarded ... The awards program is based entirely on merit and decided upon by a ...
(Date:1/19/2017)... 2017 Acupath Laboratories, Inc., a leading provider ... an Executive Committee that will guide the company,s vision ... John Cucci , a 15-year veteran of the anatomic ... Development to Chief Sales Officer .  Prior to ... senior sales leadership roles at several leading lab industry ...
(Date:1/18/2017)... , Jan. 18, 2017 Applied BioMath ... modeling to drug research and development, today announced ... President, and CEO of Applied BioMath, will present ... and Modeling (BAGIM) Meeting on Thursday January 19, ... Cambridge , MA.   Dr. Burke,s talk "Quantitative ...
Breaking Biology Technology:
(Date:12/7/2016)... According to a new market research report "Emotion Detection ... Voice Recognition), Service, Application Area, End User, And Region - Global Forecast to ... 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a Compound ... ... MarketsandMarkets Logo ...
(Date:12/7/2016)...   Avanade is helping Williams Martini Racing, ... history, exploit biometric data in order to critically analyse ... competitive edge against their rivals after their impressive, record-breaking ... has worked with Williams during the 2016 season to ... rate, breathing rate, temperature and peak acceleration) for key ...
(Date:12/6/2016)... , Dec. 6, 2016  Zimmer Biomet Holdings, Inc. ... has priced an offering of €500.0 million principal amount of ... principal amount of its 2.425% senior unsecured notes due 2026. ... to occur on December 13, 2016, subject to the satisfaction of ... annual basis. The Company intends ...
Breaking Biology News(10 mins):