Navigation Links
Connecting the (quantum) dots
Date:2/26/2013

PITTSBURGHRecent research offers a new spin on using nanoscale semiconductor structures to build faster computers and electronics. Literally.

University of Pittsburgh and Delft University of Technology researchers reveal in the Feb. 17 online issue of Nature Nanotechnology a new method that better preserves the units necessary to power lightning-fast electronics, known as qubits (pronounced CUE-bits). Hole spins, rather than electron spins, can keep quantum bits in the same physical state up to 10 times longer than before, the report finds.

"Previously, our group and others have used electron spins, but the problem was that they interacted with spins of nuclei, and therefore it was difficult to preserve the alignment and control of electron spins," said Sergey Frolov, assistant professor in the Department of Physics and Astronomy within Pitt's Kenneth P. Dietrich School of Arts and Sciences, who did the work as a postdoctoral fellow at Delft University of Technology in the Netherlands.

Whereas normal computing bits hold mathematical values of zero or one, quantum bits live in a hazy superposition of both states. It is this quality, said Frolov, which allows them to perform multiple calculations at once, offering exponential speed over classical computers. However, maintaining the qubit's state long enough to perform computation remains a long-standing challenge for physicists.

"To create a viable quantum computer, the demonstration of long-lived quantum bits, or qubits, is necessary," said Frolov. "With our work, we have gotten one step closer."

The holes within hole spins, Frolov explained, are literally empty spaces left when electrons are taken out. Using extremely thin filaments called InSb (indium antimonide) nanowires, the researchers created a transistor-like device that could transform the electrons into holes. They then precisely placed one hole in a nanoscale box called "a quantum dot" and controlled the spin of that hole using electric fields. This approach featuring nanoscale size and a higher density of devices on an electronic chipis far more advantageous than magnetic control, which has been typically employed until now, said Frolov.

"Our research shows that holes, or empty spaces, can make better spin qubits than electrons for future quantum computers."

"Spins are the smallest magnets in our universe. Our vision for a quantum computer is to connect thousands of spins, and now we know how to control a single spin," said Frolov. "In the future, we'd like to scale up this concept to include multiple qubits."


'/>"/>

Contact: B. Rose Huber
rhuber@pitt.edu
412-624-4356
University of Pittsburgh
Source:Eurekalert

Post Your Comments:
*Name:
*Comment:
*Email:
(Date:7/20/2017)... and PLYMOUTH, Minn., July 20, 2017 /PRNewswire/ ... , a personalized genetic evaluations company, today announced ... their partnership investigating a genetic mutation implicated in ... extend the partnership for a second case involving ... year, the KCNQ2 Cure Alliance and Pairnomix entered ...
(Date:7/18/2017)... ... July 18, 2017 , ... Genedata, a ... leading science and technology company, has implemented Genedata Biologics ™ to scale-up ... of Oncology, Immunology, and Neurodegenerative Diseases. , The need to systematically evaluate large ...
(Date:7/17/2017)... ... 2017 , ... Whitehouse Laboratories is excited to announce that ... series of ISO 80369 standard test procedures. The ISO 80369 series of eight ... systems. With this recent expansion, Whitehouse Labs becomes one of the only facilities ...
(Date:7/17/2017)... (PRWEB) , ... July 17, 2017 , ... ... Weihong Hsing, Ph.D. , recently participated in the BiG (Biomedical Innovation Group) ... was dominated by discussions of CAR-T (chimeric antigen receptor T-cell) therapy, a rapidly ...
Breaking Biology Technology:
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the ... Annual Report on Form 10-K on Thursday April 13, 2017 with ... ... Relations section of the Company,s website at http://www.nxt-id.com  under "SEC ... . 2016 Year Highlights: Acquisition ...
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
Breaking Biology News(10 mins):