Navigation Links
Connecting the (quantum) dots
Date:2/26/2013

PITTSBURGHRecent research offers a new spin on using nanoscale semiconductor structures to build faster computers and electronics. Literally.

University of Pittsburgh and Delft University of Technology researchers reveal in the Feb. 17 online issue of Nature Nanotechnology a new method that better preserves the units necessary to power lightning-fast electronics, known as qubits (pronounced CUE-bits). Hole spins, rather than electron spins, can keep quantum bits in the same physical state up to 10 times longer than before, the report finds.

"Previously, our group and others have used electron spins, but the problem was that they interacted with spins of nuclei, and therefore it was difficult to preserve the alignment and control of electron spins," said Sergey Frolov, assistant professor in the Department of Physics and Astronomy within Pitt's Kenneth P. Dietrich School of Arts and Sciences, who did the work as a postdoctoral fellow at Delft University of Technology in the Netherlands.

Whereas normal computing bits hold mathematical values of zero or one, quantum bits live in a hazy superposition of both states. It is this quality, said Frolov, which allows them to perform multiple calculations at once, offering exponential speed over classical computers. However, maintaining the qubit's state long enough to perform computation remains a long-standing challenge for physicists.

"To create a viable quantum computer, the demonstration of long-lived quantum bits, or qubits, is necessary," said Frolov. "With our work, we have gotten one step closer."

The holes within hole spins, Frolov explained, are literally empty spaces left when electrons are taken out. Using extremely thin filaments called InSb (indium antimonide) nanowires, the researchers created a transistor-like device that could transform the electrons into holes. They then precisely placed one hole in a nanoscale box called "a quantum dot" and controlled the spin of that hole using electric fields. This approach featuring nanoscale size and a higher density of devices on an electronic chipis far more advantageous than magnetic control, which has been typically employed until now, said Frolov.

"Our research shows that holes, or empty spaces, can make better spin qubits than electrons for future quantum computers."

"Spins are the smallest magnets in our universe. Our vision for a quantum computer is to connect thousands of spins, and now we know how to control a single spin," said Frolov. "In the future, we'd like to scale up this concept to include multiple qubits."


'/>"/>

Contact: B. Rose Huber
rhuber@pitt.edu
412-624-4356
University of Pittsburgh
Source:Eurekalert

Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/21/2017)... (PRWEB) , ... May 19, 2017 , ... ... meeting and educational conference of the American Association of Bioanalysts (AAB) and the ... Hotel in Houston. The conference reinforces AAB’s commitment to excellence in clinical laboratory ...
(Date:5/19/2017)... , ... May 19, 2017 , ... In response to ... gait disorders, Biodex Medical Systems, Inc. announces the release of their Gait Trainer 3 ... been joined with a biomedical system to aid in rehabilitating individuals with cerebral palsy, ...
(Date:5/18/2017)... ... 18, 2017 , ... Dr. Ralph Mobbs of the Neuro ... Wales Private Hospital. The procedure was performed on a 46-year-old male patient suffering ... prior to undergoing surgery. , The AxioMed viscoelastic disc is a next-generation disc ...
(Date:5/18/2017)... ... May 16, 2017 , ... Clinical Supplies Management (“CSM”), a Great Point ... continues to grow. CSM has doubled in size over the past six months ... growth strategy. , Roger Gasper joins CSM as Chief Financial Officer. Roger has ...
Breaking Biology Technology:
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:3/30/2017)... LOS ANGELES , March 30, 2017  On ... Hack the Genome hackathon at ... This exciting two-day competition will focus on developing health ... experience. Hack the Genome is ... has been tremendous. The world,s largest companies in the ...
Breaking Biology News(10 mins):