Navigation Links
Connecting Materials Science With Biology, K-State Engineers Create DNA Sensors That Could Identify Cancer Using Material Only One Atom Thick
Date:4/13/2009

MANHATTAN, Kan., April 13 /PRNewswire-USNewswire/ -- Kansas State University engineers think the possibilities are deep for a very thin material.

Vikas Berry, assistant professor of chemical engineering, is leading research combining biological materials with graphene, a recently developed carbon material that is only a single atom thick.

"The biological interfacing of graphene is taking this material to the next level," Berry said. "Discovered only four years ago, this material has already shown a large number of capabilities. K-Staters are the first to do bio-integrated research with graphene."

To study graphene, researchers rely on an atomic force microscope to help them observe and manipulate these single atom thick carbon sheets.

"It's a fascinating material to work with," Berry said. "The most significant feature of graphene is that the electrons can travel without interruptions at speeds close to that of light at room temperature. Usually you have to go near zero Kelvin -- that's about 450 degrees below zero Fahrenheit -- to get electrons to move at ultra high speeds."

One of Berry's developments is a graphene-based DNA sensor. When electrons flow on the graphene, they change speed if they encounter DNA. The researchers notice this change by measuring the electrical conductivity. The work was published in Nano-Letters.

"Most DNA sensors are optical, but this one is electrical," Berry said. "We are currently collaborating with researchers from Harvard Medical School to sense cancer cells in blood."

Another area he is exploring is loading graphene with antibodies and flowing bacteria across the surface.

"Most researchers focus on pristine graphene, but we're making it dirty," he said.

Berry and Nihar Mohanty, a graduate student in chemical engineering, used a type of bacteria commonly found in rice and interfaced it with graphene. They found that the graphene with tethered antibodies will wrap itself around an individual bacterium, which remains alive for 12 hours.

Berry said that possible applications include a high-efficiency bacteria-operated battery, where by using geobater, a type of bacteria known to produce electrons, can be wrapped with graphene to produce electricity. The research was presented at the annual American Physical Society conference in Pittsburgh and the American Institute for Chemical Engineers conference in Philadelphia.

"Materials science is an incredible field with several exploitable quantum effects occurring at molecular scale, and biology is a remarkable field with a variety of specific biochemical mechanisms," Berry said. "But for the most part the two fields are isolated. If you join these two fields, the possibilities are going to be immense. For example, one can think of a bacterium as a machine with molecular scale components and one can exploit the functioning of those components in a material device."

For his doctoral research, Berry used bacteria to make a humidity sensor.

"That was only possible through combining materials science with biological science," he said.

Another area of his current research is compressing and stretching molecular-junctions between nanoparticles. Berry said that his group has developed a molecular-spring device where they can compress and stretch molecules, which then act like springs, allowing researchers to study how they relax back. He said that this technology could be used to create molecular-timers in which the spring action from a decompressed molecule on a chip could trigger a circuit, for instance.

Berry said for stretching the molecules, Kabeer Jasuja, a doctoral student in chemical engineering, came up with the idea to place the device on a centrifuge to stretch the molecules with centrifugal force.

The work was published in the journal, Small.


'/>"/>
SOURCE Kansas State University
Copyright©2009 PR Newswire.
All rights reserved

Related biology technology :

1. Researchers create catalysts for use in hydrogen storage materials
2. How Long Will the Economic Downturn Affect the Dental Biomaterials Market?
3. Quantum dots and nanomaterials: Ingredients for better lighting and more reliable power
4. Nanotechnologists gain powerful new materials probe
5. Cheaper materials could be key to low-cost solar cells
6. Pitt researchers create nontoxic clean-up method for potentially toxic nano materials
7. Aldrich(R) Releases Materials Science Catalog That Includes Products to Advance Sustainable Energy and Nanotechnology Research
8. NIST stress tests probe nanoscale strains in materials
9. SAFC Hitech(TM) Expands Electronic Materials Portfolio With the Introduction of Scintillation Crystal Growth Halides
10. New knowledge about thermoelectric materials could give better energy efficiency
11. NSF awards 14 materials research science and engineering centers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/16/2017)... , Feb. 16, 2017  ArmaGen, Inc., ... groundbreaking therapies to treat severe neurological disorders, today ... treated with AGT-181, the company,s investigational therapy for ... known as mucopolysaccharidosis type I, or MPS I). ... proof-of-concept (POC) study, presented today at the 13 ...
(Date:2/16/2017)... , Feb. 16, 2017   Biostage, Inc. ... "Company"), a biotechnology company developing bioengineered organ implants to ... bronchus and trachea, announced today the closing on February ... 20,000,000 shares of common stock and warrants to purchase ... of $8.0 million. The offering was priced at $0.40 ...
(Date:2/16/2017)...  Dermata Therapeutics, LLC, a biotechnology company developing ... of dermatological diseases, today announced it has completed ... into a $5 million credit facility with Silicon ... capital for general corporate purposes to further Dermata,s ... of serious diseases treated by dermatologists.   ...
(Date:2/16/2017)... 2017  Windtree Therapeutics, Inc. (Nasdaq: ... aerosolized KL4 surfactant therapies for respiratory diseases, announced ... showed that aerosolized KL4 surfactant reduced lung inflammation ... animal model. The Company believes that these preclinical ... that supports the role of KL4 surfactant as ...
Breaking Biology Technology:
(Date:2/8/2017)... 2017 Report Highlights The global ... $8.3 billion in 2016 at a compound annual growth ... Report Includes - An overview of the global market ... data from 2015 and 2016, and projections of compound ... the market on the basis of product type, source, ...
(Date:2/6/2017)... Feb. 6, 2017 According to Acuity ... driving border authorities to continue to embrace biometric ... are 2143 Automated Border Control (ABC) eGates and ... at more than 163 ports of entry across ... 2016 achieving a combined CAGR of 37%. APC ...
(Date:2/2/2017)... , Feb. 2, 2017  EyeLock LLC, a ... a new white paper " What You Should Know ... problem of ensuring user authenticity is a growing concern. ... authentication of users. However, traditional authentication schemes such as ... Biometric authentication offers an elegant solution to ...
Breaking Biology News(10 mins):