Navigation Links
Conducting energy on a nano scale
Date:7/15/2011

Tel Aviv Modern electronics as we know them, from televisions to computers, depend on conducting materials that can control electronic properties. As technology shrinks down to pocket sized communications devices and microchips that can fit on the head of a pin, nano-sized conducting materials are in big demand.

Now, Prof. Eran Rabani of Tel Aviv University's School of Chemistry at the Raymond and Beverly Sackler Faculty of Exact Sciences, in collaboration with Profs. Uri Banin and Oded Millo at the Hebrew University, has been able to demonstrate how semiconductor nanocrystals can be doped in order to change their electronic properties and be used as conductors. This opens a world of possibilities, says Prof. Rabani, in terms of applications of small electronic and electro-optical devices, such as diodes and photodiodes, electric components used in cellular phones, digital cameras, and solar panels.

Solar panels are typically made from a pn junction. When they absorb light, the junction separates the negatively charged electrons and the positively charged holes, producing an electrical current, explains Prof. Rabani. "With this new method for doping nanocrystals to make them both p and n type, we hope that solar panels can be made not only more efficient, but cheaper as well," he says. This research has been published recently in the journal Science.

Crystal-clear progress

According to Prof. Rabani, the quest to electrically dope nanocrystals has been an uphill battle. The crystals themselves have the capacity to self-purify, which means that they cleanse themselves of dopants. Also, he adds, some of the synthetic methods for doping were problematic on the nano-scale the crystals were unable to withstand doping techniques applicable to bulk semiconductors.

The key, explains Prof. Rabani, was to find a method for doping the nanocrystals without "bleaching" their optical properties and therefore nullifying their absorption capabilities. If you can dope nanocrystals in this way, he says, it opens the door to many practical applications based on nanocrystalline materials. "Whatever you can do with nanocrystals, you can do with doped nanocrystals and more by controlling their electronic properties."

These challenges were circumvented with the use of room temperature diffusion controlled reactions. The crystals were bathed in a solution that included the dopants, where slow diffusion allowed for impurities to find their way into the nanocrystal.

The researchers used a scanning tunneling microscope (STM), a device that images surfaces at an atomic level, in order to determine the success of their doping procedure. These measurements indicated how the Fermi energy of the nanocrystals changed upon doping, a key feature in controlling the electronic properties of electronic devices. The results, notes Prof. Rabani, indicate that the nanocrystals have been doped with both n-type dopants, indicating the presence of excess electrons in the nanocrystals, and p-type, which contribute positively charged holes to the semiconductors. This will allow for their use in electronics that require a pn junction, such as solar panels, light emitting diodes, and more.

Broadening the nanocrystal spectrum

Not only did Prof. Rabani and his fellow researchers succeed in doping nanocrystals without bleaching their optical properties, but they also were able to control the optical properties, namely, the color range that the nanocrystals produce. Once doped, the nanocrystal particles could change in color, becoming more red or blue. Prof. Rabani and his colleagues were able to develop a theory to explain these observations.

Prof. Rabani says that this technology can go a long way. Doping semiconductors, he explains, has been essential for the development of technology. "Parallel to this, we also know we want to make electrical components very small. A big portion of future electronics or optics is going to be based on doping nanoparticles."


'/>"/>

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Source:Eurekalert

Related biology technology :

1. Scientists engineer superconducting thin films
2. PAREXEL Expert to Address Key Aspects of Conducting Clinical Trials in China at 7th Annual Partnerships in Clinical Trials Congress
3. Semiconducting nanotubes produced in quantity at Duke
4. Waukesha Electric partners with SuperPower and UH to build fault current limiting superconducting transformer for Dept. of Energy
5. MIT scientists transform polyethylene into a heat-conducting material
6. Conducting ferroelectrics may be key to new electronic memory
7. Flexible nanoantenna arrays capture abundant solar energy
8. China Bio Energy Holdings Group Reports Second Quarter 2008 Financial Results
9. GEECF: Spectrum Launches Zero Waste Philippines and Gears Towards Cheap Green Energy
10. Scientists grow nanonets able to snare added energy transfer
11. Understanding the science of solar-based energy: more researchers are better than one
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, ... Pennsylvania Convention Center and will showcase its product’s latest features from June 26 ... presenting a scientific poster on Disrupting Clinical Trials in The Cloud during the ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of intelligent tools designed, tuned and optimized exclusively for Okuma CNC machining centers ... The result of a collaboration among several companies with expertise in toolholding, cutting ...
(Date:6/23/2016)... India , June 23, 2016 ... media market research report to its pharmaceuticals section ... profiles, product details and much more. ... spread across 151 pages, profiling 15 companies and ... available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
(Date:6/22/2016)... Research and Markets has announced the addition of the "Biomarkers: ... The global biomarkers market has grown ... market is expected to grow at a five-year compound annual growth ... billion in 2015 to $96.6 billion in 2020. ... 2020) are discussed. As well, new products approved in 2013 and ...
Breaking Biology Technology:
(Date:6/21/2016)... 21, 2016 NuData Security announced today that ... of principal product architect and that Jon ... customer development. Both will report directly to ... moves reflect NuData,s strategic growth in its product ... customer demand and customer focus values. ...
(Date:6/9/2016)... 2016 Paris Police Prefecture ... security solution to ensure the safety of people and operations ... the major tournament Teleste, an international technology group ... announced today that its video security solution will be utilised ... up public safety across the country. The system roll-out is ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, ... Infrastructure, Support & Other Service  The latest ... comprehensive analysis of the global Border Security market ... of $17.98 billion in 2016. Now: In ... in software and hardware technologies for advanced video surveillance. ...
Breaking Biology News(10 mins):