Navigation Links
Columbia engineers make world's smallest FM radio transmitter
Date:11/18/2013

New York, NYNovember 17, 2013A team of Columbia Engineering researchers, led by Mechanical Engineering Professor James Hone and Electrical Engineering Professor Kenneth Shepard, has taken advantage of graphene's special propertiesits mechanical strength and electrical conductionand created a nano-mechanical system that can create FM signals, in effect the world's smallest FM radio transmitter. A team of Columbia Engineering researchers, led by Mechanical Engineering Professor James Hone and Electrical Engineering Professor Kenneth Shepard, has taken advantage of graphene's special propertiesits mechanical strength and electrical conductionand created a nano-mechanical system that can create FM signals, in effect the world's smallest FM radio transmitter. The study [http://dx.doi.org/ - DOI 10.1038/nnano.2013.232] is published online on November 17, in Nature Nanotechnology.

"This work is significant in that it demonstrates an application of graphene that cannot be achieved using conventional materials," Hone says. "And it's an important first step in advancing wireless signal processing and designing ultrathin, efficient cell phones. Our devices are much smaller than any other sources of radio signals, and can be put on the same chip that's used for data processing."

Graphene, a single atomic layer of carbon, is the strongest material known to man, and also has electrical properties superior to the silicon used to make the chips found in modern electronics. The combination of these properties makes graphene an ideal material for nanoelectromechanical systems (NEMS), which are scaled-down versions of the microelectromechanical systems (MEMS) used widely for sensing of vibration and acceleration. For example, Hone explains, MEMS sensors figure out how your smartphone or tablet is tilted to rotate the screen.

In this new study, the team took advantage of graphene's mechanical 'stretchability' to tune the output frequency of their custom oscillator, creating a nanomechanical version of an electronic component known as a voltage controlled oscillator (VCO). With a VCO, explains Hone, it is easy to generate a frequency-modulated (FM) signal, exactly what is used for FM radio broadcasting. The team built a graphene NEMS whose frequency was about 100 megahertz, which lies right in the middle of the FM radio band (87.7 to 108 MHz). They used low-frequency musical signals (both pure tones and songs from an iPhone) to modulate the 100 MHz carrier signal from the graphene, and then retrieved the musical signals again using an ordinary FM radio receiver.

"This device is by far the smallest system that can create such FM signals," says Hone.

While graphene NEMS will not be used to replace conventional radio transmitters, they have many applications in wireless signal processing. Explains Shepard, "Due to the continuous shrinking of electrical circuits known as 'Moore's Law', today's cell phones have more computing power than systems that used to occupy entire rooms. However, some types of devices, particularly those involved in creating and processing radio-frequency signals, are much harder to miniaturize. These 'off-chip' components take up a lot of space and electrical power. In addition, most of these components cannot be easily tuned in frequency, requiring multiple copies to cover the range of frequencies used for wireless communication."

Graphene NEMS can address both problems: they are very compact and easily integrated with other types of electronics, and their frequency can be tuned over a wide range because of graphene's tremendous mechanical strength.

"There is a long way to go toward actual applications in this area," notes Hone, "but this work is an important first step. We are excited to have demonstrated successfully how this wonder material can be used to achieve a practical technological advancementsomething particularly rewarding to us as engineers."

The Hone and Shepard groups are now working on improving the performance of the graphene oscillators to have lower noise. At the same time, they are also trying to demonstrate integration of graphene NEMS with silicon integrated circuits, making the oscillator design even more compact.


'/>"/>

Contact: Holly Evarts
holly.evarts@columbia.edu
347-453-7408
Columbia University
Source:Eurekalert

Related biology technology :

1. Genia Technologies, Columbia University, and Harvard University Awarded $5.25 Million Grant from NIH to Accelerate the Development of NanoTag DNA Sequencing Technology
2. Dr. Szczepan Baran will be Presenting at the International Microsurgical Simulation Society at Columbia University in New York
3. Columbias Nursing School Launches "Keep It Clean for Kids" (KICK)
4. IEEE-USA & DuPont Will Lead 2014 U.S. Engineers Week Activities
5. Wayne State receives National Science Foundation grant for training future nanoengineers
6. Engineers fine-tune the sensitivity of nano-chemical sensor
7. Forget about leprechauns, engineers are catching rainbows
8. Cornell bioengineers discover the natural switch that controls spread of breast cancer cells
9. UT Arlington engineers working to prevent heat buildup within 3D integrated circuits
10. UCLA engineers develop new energy-efficient computer memory using magnetic materials
11. Engineers achieve longstanding goal of stable nanocrystalline metals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... , March 29, 2017 /PRNewswire/ -  GeneNews Limited ... BreastSentry™ , a new risk stratification test for breast ... lab, Innovative Diagnostics Laboratory ("IDL"). BreastSentry incorporates a blood-based biomarker ... and lifetime risk for developing breast cancer.   ... BreastSentry measures the ...
(Date:3/29/2017)... , March 29, 2017 The Global ... 2022 report is a specialized and comprehensive study on the existing ... North America , Europe and ... Middle East and Africa . ... Browse 172 Tables ...
(Date:3/28/2017)... ... March 28, 2017 , ... NetDimensions announced today ... and enhance training plan management for consistent implementation of standards and regulatory requirements ... SHL Group to help improve and streamline their training and employee development programs, ...
(Date:3/28/2017)... ... March 28, 2017 , ... Franz Inc ., the leading ... , has been named a ‘Champion’ by Bloor Research in its recent Graph ... in its class, and, thanks to Gruff, it was rated as the easiest product ...
Breaking Biology Technology:
(Date:3/1/2017)... BEDFORD, Mass. , March 1, 2017  Aware, ... and services, announced that Richard P. Moberg ... Officer and co-President and Chief Financial Officer and Treasurer ... will continue to serve as a member of the ... T. Russell , Aware,s co-Chief Executive Officer and co-President, ...
(Date:2/27/2017)... , Feb. 27, 2017   Strategic Cyber ... announced it has led a $3.5 million investment in  ... platform. Strategic Cyber Ventures is DC based and is ... Hank Thomas . Ron Gula , also ... Ventures, also participated in this series A round of ...
(Date:2/21/2017)... N.Y. and PORTLAND, Ore. ... ) and the Avamere Family of Companies (Avamere Health ... today announced a six-month research study that will apply ... improve eldercare at senior living and health centers. By ... Avamere hopes to gain insights into physical and environmental ...
Breaking Biology News(10 mins):