Navigation Links
Columbia University researchers use nanoscale transistors to study single-molecule interactions
Date:1/24/2011

New York January 23, 2011 An interdisciplinary team from Columbia University that includes electrical engineers from Columbia's Engineering School, together with researchers from the University's departments of Physics and Chemistry, has figured out a way to study single-molecule interactions on very short time scales using nanoscale transistors. In a paper to be published online January 23 in Nature Nanotechnology, they show how, for the first time, transistors can be used to detect the binding of the two halves of the DNA double helix with the DNA tethered to the transistor sensor. The transistors directly detect and amplify the charge of these single biomolecules.

Prior to this work, scientists have largely used fluorescence techniques to look at interactions at the level of single molecules. These studies have yielded fundamental understanding of folding, assembly, dynamics, and function of proteins and other cellular machinery. But these techniques require that the target molecules being studied be labeled with fluorescent reporter molecules, and the bandwidths for detection are limited by the time required to collect the very small number of photons emitted by these reporters.

The Columbia researchers, including Professor of Electrical Engineering Ken Shepard, Professor of Chemistry Colin Nuckolls, and graduate students Sebastian Sorgenfrei and Chien-Yang Chiu, realized that transistors, like those used in modern integrated circuits, have reached the same nanoscale dimensions as single molecules. "So this raised the interesting question," said Sorgenfrei, the lead author on the study, "as to whether these very small transistors could be used to study individual molecules."

They have discovered that the answer is "yes." The transistors employed in this study are fashioned from carbon nanotubes, which are cylindrical tubes made entirely of carbon atoms. While these are still emerging devices for electronics applications, they are exquisitely sensitive because the biomolecule can be directly tethered to the carbon nanotube wall creating enough sensitivity to detect a single DNA molecule.

The Columbia team expects this new technique to be a powerful tool for looking at single molecule interactions and is looking at instrumentation applications that currently rely almost exclusively on fluorescence such as protein assays and DNA sequencing. They also plan to study interactions at time scales several orders of magnitude greater than current techniques based on fluorescence.

"The area of single molecule research is an important one and pushes the envelope on our sensing systems," commented Ken Shepard, Professor of Electrical Engineering at Columbia Engineering. "There is a huge potential for modern nanoelectronics to play an important role in this field. Our work, which has been a terrific collaboration between groups from Electrical Engineering, Chemistry, and Physics, is a great example of how nanoelectronics and biotechnology can be combined to produce new, exciting results."

Shepard hopes that this research, which was funded primarily by the National Science Foundation and the National Institutes of Health, will lead to exciting new applications for nanoscale electronic circuits.


'/>"/>

Contact: Holly Evarts
holly@engineering.columbia.edu
212-854-3206
Columbia University
Source:Eurekalert

Related biology technology :

1. OncoGenex Pharmaceuticals Named Life Sciences Company of the Year by LifeSciences British Columbia
2. Leading North American Emergency Medical Services Provider British Columbia Ambulance Service Selects NICE Inform for Improved Service
3. Columbia engineering team discovers graphenes weakness
4. NIH Funds $1M Research at Quest Product Development and University of Colorado for New Digitally-Controlled Endoscopes
5. University of Pennsylvania scientists move optical computing closer to reality
6. RainDance Technologies Signs a Collaboration Agreement with sanofi-aventis and Louis Pasteur University to Launch dScreen Consortium within ALSACE BIOVALLEY cluster
7. University of Southern California Receives Cancer Diagnosis System for Detecting Esophageal Dysplasia
8. Stem Cell Transplantation Program at Hackensack University Medical Center: First in Nation to Receive Joint Commission Certification for Quality and First in New Jersey to be Named a Blue Distinction(R) Center for Specialty Care.
9. [video] Ronald Andrews, CEO of Clarient, Inc. Discusses Agreement With University of Pennsylvania School of Medicine on WallSt.nets 3-Minute Press Show
10. George Washington University Hospital Purchases Orthocrats TraumaCad(TM) for Orthopedic Preoperative Planning
11. Sigma-Aldrich and the University of Illinois Offer New Boronic Acid Surrogates to Researchers Worldwide Through Licensing Agreement
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... 2016 , ... Cancer experts from Austria, Hungary, Switzerland, and ... new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma has just published ... , Biomarkers are components in the blood, tissue or body fluids that ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... ... 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers use ... 6000i models are higher end machines that use the more unconventional z-dimension of 20mm. ... from the bottom of the cuvette holder. , FireflySci has developed several Agilent ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
Breaking Biology Technology:
(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
Breaking Biology News(10 mins):