Navigation Links
Collaboration yields 'the right glasses' for observing mystery behavior in electrons

LOS ALAMOS, New Mexico, December 13, 2007In collaboration with the Center for Integrated Nanotechnologies at Los Alamos, an international team of researchers has, for the first time, viewed on a nanoscale the formation of mysterious metallic puddles that facilitate the transition of an electrically insulating material into an electrically conducting one.

The research may lead to a better understanding of superconductorsmaterials that conduct electricity without energy lossor development of better materials for powering high-speed electronics.

In a paper published today in Science, Los Alamos researcher Alexander Balatsky joins researchers in describing a novel approach to viewing Mott transition in vanadium dioxide. Balatskys co-authors include: Mumtaz Qazilbash, Greg Andreev, Brian Maple and Dimitri Basov of the University of California-San Diego; Markus Brehm and Fritz Keilmann of the Max Planck Institute for Biochemistry and Center for NanoScience in Munich, Germany; and Byung-Gyu Chae, Hyun-Tak Kim and Sun Jin Yun of IT Convergence and Components Lab, Electronics and Telecommunication Research Institute in Korea.

Materials such as copper metal contain electrons that are mobile enough to conduct an electrical current. In conducting materials such as copper or aluminum, electrons do not hinder one another and are free to move about the lattice structure of the material. In more-complex crystal oxides, such as vanadium dioxide, electrons can become influenced by nearby positively or negatively charged particles, and their movement can become hindered. These materials are known by physicists as correlated materials.

Correlated materials include superconductors or semiconductorscrystals peppered or doped with atoms that may donate mobile electrons to the solid. Correlated materials can exhibit extraordinary changes in their physical properties, such as transforming from an insulating material to a conducting material, when subjected to relatively small changes in pressure or temperature.

Vanadium dioxide begins to transform itself from an insulator to a conductor when heated above 341 degrees Kelvin (about 154 degrees Fahrenheit or 68 degrees Celsius).

For decades scientists have puzzled over how this transformation to a fully metallic stateknown as Mott metal-insulator transitionoccurs. Balatsky, a Los Alamos condensed-matter theorist, believed, like many other scientists, that the transition begins when metallic puddles begin forming at sites of impurities or imperfections within the lattice. The puddles grow until they touch, and at that point the material becomes conductive, or superconductive.

We had evidence to believe that metallic puddles were forming in an inhomogenous manner within the material at the transition phase, but we had no way of proving it, said Balatsky. If you had the right glasses that could see something extremely small, you could see this process occurring.

The right glasses came in the form of a microscopic viewing technique known as near-field scanning optical microscopy, which has been used to inspect viruses and nano-transistors. The microscope sees infrared light reflecting off of a surface only 20-billionths of a meter (or 20 nanometers) wide. A single virus is less than 20 nanometers wide, while a typical human hair is about 100,000 nanometers wide.

Using this nanoscale viewer, the UCSD-LANL-Max Planck-ETRI team was able to watch metallic puddles form within vanadium oxide at the exact temperature where the Mott transition was expected to occur. These infrared nanoscope images have revealed for the first time a new type of metal phase existing only during the transition of the material from its insulating state to its conducting state.

The new findings will help researchers worldwide better describe and understand underlying physical laws of how charges propagate through correlated materials.

The research could help materials scientist understand how to precisely dope a material with specific atoms in order to optimize conducting or superconducting behavior or, conversely, to create materials impervious to electrical conductivity or magnetic influences.

What is extremely exciting about this research is that four different laboratories with complementary disciplines cooperated to use this infrared nanoscope in its first successful application for solving a solid-state physics puzzle, Keilmann said.


Contact: James E. Rickman
DOE/Los Alamos National Laboratory

Related biology technology :

1. Pharmion and MethylGene Announce Collaboration to Develop Sirtuin Inhibitors as Anti-Cancer Agents
2. InterCure and Omron Healthcare (UK) Ltd. Announce Marketing Collaboration for Hypertension Market in United Kingdom
3. Pfizer and Bristol-Myers Squibb Finalize Agreement for Worldwide Collaboration on Metabolic Disorders Program
4. ExonHit Therapeutics: Allergan and ExonHits First Collaboration Compound to Begin Human Clinical Trials
5. Dow AgroSciences and Exelixis Plant Sciences Announce Major Research Collaboration, Asset Purchase to Advance Gene Discovery and Validation
6. Baxter and Halozyme Announce Collaboration for Development of Subcutaneous GAMMAGARD LIQUID(TM) Administration Using Enhanze(TM) Technology
7. SGX Provides Update on BCR-ABL Collaboration
8. Isis Enters Broad Collaboration With Ortho-McNeil, Inc. for the Discovery, Development and Commercialization of Antisense Drugs to Treat Metabolic Diseases
9. Microbia and Forest Laboratories Announce Linaclotide Co-Development and Co-Marketing Collaboration
10. Adams Respiratory Therapeutics and Lipocine Enter into License and Collaboration Agreement
11. TorreyPines Therapeutics and Eisai Co., Ltd. Extend Genetics Discovery Collaboration for Alzheimers Disease
Post Your Comments:
(Date:11/25/2015)... India , November 26, 2015 ... The Global Biobanking Market 2016 - 2020 report ... by maintaining integrity and quality in long-term samples, ... enabling long-term cost-effectiveness. Automation minimizes manual errors such ... the technical efficiency. Further, it plays a vital ...
(Date:11/25/2015)... Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) ... a stockholder rights plan (Rights Plan) in an effort ... carryforwards (NOLs) under Section 382 of the Internal Revenue ... PharmAthene,s use of its NOLs could be substantially ... defined in Section 382 of the Code. In general, ...
(Date:11/25/2015)... , November 25, 2015 2 ... première fois les différences entre les souches bactériennes ... celles des êtres humains . Ces recherches ... et envisager la prise en charge efficace de ... diagnostiqués chez les chats .    --> ...
(Date:11/25/2015)... Studies reveal the differences in ... pave the way for more effective treatment for one of ...   --> --> Gum ... in cats, yet relatively little was understood about the bacteria ... been conducted by researchers from the WALTHAM Centre for Pet ...
Breaking Biology Technology:
(Date:11/20/2015)... , November 20, 2015 ... company focused on the growing mobile commerce market and ... Gino Pereira , was recently interviewed on ... will air on this weekend on Bloomberg Europe ... America . --> NXTD ) ("NXT-ID" or ...
(Date:11/19/2015)... , Nov. 19, 2015  Based on its ... & Sullivan recognizes BIO-key with the 2015 Global Frost ... year, Frost & Sullivan presents this award to the ... catering to the needs of the market it serves. ... line meets and expands on customer base demands, the ...
(Date:11/19/2015)... 2015  Although some 350 companies are actively involved ... few companies, according to Kalorama Information. These include Roche Diagnostics, ... market share of the 6.1 billion-dollar molecular testing market, ... for Molecular Diagnostic s .    ... controlled by one company and only a handful of ...
Breaking Biology News(10 mins):