Navigation Links
Chemists become molecular sculptors, synthesizing tiny, molecular traps
Date:12/5/2011

BUFFALO, N .Y. -- Using clever but elegant design, University at Buffalo chemists have synthesized tiny, molecular cages that can be used to capture and purify nanomaterials.

Sculpted from a special kind of molecule called a "bottle-brush molecule," the traps consist of tiny, organic tubes whose interior walls carry a negative charge. This feature enables the tubes to selectively encapsulate only positively charged particles.

In addition, because UB scientists construct the tubes from scratch, they can create traps of different sizes that snare molecular prey of different sizes. The level of fine tuning possible is remarkable: In the Journal of the American Chemical Society, the researchers report that they were able to craft nanotubes that captured particles 2.8 nanometers in diameter, while leaving particles just 1.5 nanometers larger untouched.

These kinds of cages could be used, in the future, to expedite tedious tasks, such as segregating large quantum dots from small quantum dots, or separating proteins by size and charge.

"The shapes and sizes of molecules and nanomaterials dictate their utility for desired applications. Our molecular cages will allow one to separate particles and molecules with pre-determined dimensions, thus creating uniform building blocks for the fabrication of advanced materials," said Javid Rzayev, the UB assistant professor of chemistry who led the research.

"Just like a contractor wants tile squares or bricks to be the same size so they fit well together, scientists are eager to produce nanometer-size particles with the same dimensions, which can go a long way toward creating uniform and well-behaved materials," Rzayev said.

To create the traps, Rzayev and his team first constructed a special kind of molecule called a bottle-brush molecule. These resemble a round hair brush, with molecular "bristles" protruding all the way around a molecular backbone.

After stitching the bristles together, the researchers hollowed out the center of each bottle-brush molecule, leaving behind a structure shaped like a toilet paper tube.

The carving process employed simple but clever chemistry: When building their bottlebrush molecules, the scientists constructed the heart of each molecule using molecular structures that disintegrate upon coming into contact with water. Around this core, the scientists then attached a layer of negatively charged carboxylic acid groups.

To sculpt the molecule, the scientists then immersed it water, in effect hollowing the core. The resulting structure was the trapa nanotube whose inner walls were negatively charged due to the presence of the newly exposed carboxylic acid groups.

To test the tubes' effectiveness as traps, Rzayev and colleagues designed a series of experiments involving a two-layered chemical cocktail.

The cocktail's bottom layer consisted of a chloroform solution containing the nanotubes, while the top layer consisted of a water-based solution containing positively charged dyes. (As in a tequila sunrise, the thinner, water-based solution floats on top of the denser chloroform solution, with little mixing.)

When the scientists shook the cocktail for five minutes, the nanotubes collided with and trapped the dyes, bringing the dyes into the chloroform solution. (The dyes, on their own, do not dissolve in chloroform.)

In similar experiments, Rzayev and his team were able to use the nanotubes to extract positively charged molecules called dendrimers from an aqueous solution. The nanotubes were crafted so that dendrimers with a diameter of 2.8 nanometers were trapped, while dendrimers that were 4.3 nanometers across were left in solution.

To remove the captured dendrimers from the nanotubes, the researchers simply lowered the pH of the chloroform solution, which shuts down the negative charge inside the traps and allows the captured particles to be released from their cages.

The research on nanotubes is part of a larger suite of studies Rzayev is conducting on bottle-brush molecules using a National Science Foundation CAREER award. His other work includes the fabrication of bottle-brush-based nanomembranes that could be adapted for water filtration, and the assembly of layered, bottle-brush polymers that reflect visible light like the wings of a butterfly do.


'/>"/>

Contact: Charlotte Hsu
chsu22@buffalo.edu
716-645-4655
University at Buffalo
Source:Eurekalert

Related biology technology :

1. Northwestern chemists take gold, mass-produce Beijing Olympic logo
2. TIBCO Speeds Drug Discovery for Chemists
3. Brown chemists create more efficient palladium fuel cell catalysts
4. Spectrum Blue Steel partners with Famous Chemists for Procuring Profitable Applications from Garbage Using the Biosphere MKV and Electrostatic Precipitators
5. Brown chemists report promising advance in fuel-cell technology
6. University of Toronto chemists make breakthrough in nanoscience research
7. IU chemists develop new light switch chloride binder
8. Metal-mining bacteria are green chemists
9. UCLA chemists, engineers achieve world record with high-speed graphene transistors
10. UC San Diego chemists produce first high-resolution RNA nano square
11. Chemists create molecular polyhedron -- and potential to enhance industrial and consumer products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a ... biotechnology industries to improve patient outcomes and quality of life, will now be ... are being attributed to new regulatory requirements for all new drug products, including ...
(Date:10/11/2017)... ... October 11, 2017 , ... The ... context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The ... transformative for performing systematic gain-of-function studies. , This complement to loss-of-function studies, ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ., ... a Webinar titled, “Pathology is going digital. Is your lab ready?” with Dr. ... best practices and how Proscia improves lab economics and realizes an increase in ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions ... over 5.5 million people each year. Especially those living in larger cities are affected ... based in one of the most pollution-affected countries globally - decided to take action. ...
Breaking Biology Technology:
(Date:4/18/2017)... -- Socionext Inc., a global expert in SoC-based imaging and computing solutions, ... which features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ... will be showcased during the upcoming Medtec Japan at Tokyo Big ... Las Vegas Convention Center April 24-27. ... Click here for an image of ...
(Date:4/11/2017)... , Apr. 11, 2017 Research and Markets ... 2017-2021" report to their offering. ... The global eye tracking market to grow at a CAGR ... Global Eye Tracking Market 2017-2021, has been prepared based on an ... the market landscape and its growth prospects over the coming years. ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
Breaking Biology News(10 mins):