Navigation Links
Cheap, strong lithium-ion battery developed at USC
Date:2/12/2013

Researchers at USC have developed a new lithium-ion battery design that uses porous silicon nanoparticles in place of the traditional graphite anodes to provide superior performance.

The new batterieswhich could be used in anything from cell phones to hybrid carshold three times as much energy as comparable graphite-based designs and recharge within 10 minutes. The design, currently under a provisional patent, could be commercially available within two to three years.

"It's an exciting research. It opens the door for the design of the next generation lithium-ion batteries," said Chongwu Zhou, professor at the USC Viterbi School of Engineering, who led the team that developed the battery. Zhou worked with USC graduate students Mingyuan Ge, Jipeng Rong, Xin Fang and Anyi Zhang, as well as Yunhao Lu of Zhejiang University in China. Their research was published in Nano Research in January.

Researchers have long attempted to use silicon, which is cheap and has a high potential capacity, in battery anodes. (Anodes are where current flows into a battery, while cathodes are where current flows out.) The problem has been that previous silicon anode designs, which were basically tiny plates of the material, broke down from repeated swelling and shrinking during charging/discharging cycles and quickly became useless.

Last year, Zhou's team experimented with porous silicon nanowires that are less than 100 nanometers in diameter and just a few microns long. The tiny pores on the nanowires allowed the silicon to expand and contract without breaking while simultaneously increasing the surface area which in turn allows lithium ions to diffuse in and out of the battery more quickly, improving performance.

Though the batteries functioned well, the nanowires are difficult to manufacture en masse. To solve the problem, Zhou's team took commercially available nanoparticlestiny silicon spheresand etched them with the same pores as the nanowires. The particles function similarly and can be made in any quantity desired.

Though the silicon nanoparticle batteries currently last for just 200 recharge cycles (compared to an average of 500 for graphite-based designs), the team's older silicon nanowire-based design lasted for up to 2,000 cycles, which was reported in Nano Lett last April. Further development of the nanoparticle design should boost the battery's lifespan, Zhou said.

"The easy method we use may generate real impact on battery applications in the near future," Zhou said.

Future research by the group will focus finding a new cathode material with a high capacity that will pair well with the porous silicon nanowires and/or porous silicon nanoparticles to create a completely redesigned battery.


'/>"/>

Contact: Robert Perkins
perkinsr@usc.edu
213-740-9226
University of Southern California
Source:Eurekalert

Related biology technology :

1. Ekahau Achieves 45% Year-over-Year Revenue Growth and Strong Adoption of Safety Alert Solution in 2012
2. Southampton scientist develops strongest, lightest glass nanofibres in the world
3. Epilepsy Foundation and Epilepsy Therapy Project Finalize Merger To Create Strong, Unified Organization To Support People with Epilepsy
4. CureLauncher is Described on LIVESTRONG Blog as Modern Platform That Gets People Involved in Advancing New Cancer Treatments
5. Inovio Pharmaceuticals Cytomegalovirus (CMV) Synthetic Vaccine Constructs Generate Strong and Broad T-Cell Responses in Preclinical Study
6. Wax-filled nanotech yarn behaves like powerful, super-strong muscle
7. Reluctant electrons enable extraordinarily strong negative refraction
8. New Incentives to Help Combat Antimicrobial Resistance, but Overuse of Strong Antibiotics Still Needs to Be Curbed
9. New semiconductor research may extend integrated circuit battery life tenfold
10. A KAIST research team has developed a high performance flexible solid state battery
11. Stanford scientists spark new interest in the century-old Edison battery
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/26/2016)... ... May 26, 2016 , ... Kinder Scientific (KinderScientific.com), a ... that position the Company for the future. Kinder Scientific announces restructured ownership ... has been appointed Chairman of the Board, Curtis D. Kinghorn has been appointed ...
(Date:5/25/2016)... Bangkok, Thailand (PRWEB) , ... May 25, 2016 ... ... the participation of a Thai delegation at BIO 2016 in San Francisco. Located ... private sector will be available to answer questions and discuss the Thai biotechnology ...
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... ... for information (RFI) issued by the Office of the National Coordinator for Health ... experience, and determines if clinically relevant data were available when and where it ...
(Date:5/25/2016)... ... May 25, 2016 , ... Lady had been battling ... her cruciate ligament in her left knee. Lady’s owner Hannah sought the help of ... board-certified veterinary surgeon, to repair her cruciate ligament and help with the pain of ...
Breaking Biology Technology:
(Date:3/17/2016)... 2016 ABI Research, the leader in ... biometrics market will reach more than $30 billion ... 2015. Consumer electronics, particularly smartphones, continue to boost ... to reach two billion shipments by 2021 at ... , Research Analyst at ABI Research. "Surveillance is ...
(Date:3/14/2016)... Florida , March 14, 2016 ... the growing mobile commerce market, announces the airing of a ... channels starting the week of March 21 st .  The ... CNBC, including its popular Squawk on the Street show. ... focused on the growing mobile commerce market, announces the airing ...
(Date:3/11/2016)... --> --> ... Recognition Market by Technology (Pattern Recognition), by Component (Hardware, ... Type (On-Premises and Cloud), by Industry Vertical and by ... the global market is expected to grow from USD ... 2020, at a CAGR of 19.1%. , ...
Breaking Biology News(10 mins):