Navigation Links
Chameleon magnets: Ability to switch magnets 'on' or 'off' could revolutionize computing

BUFFALO, N.Y. -- What causes a magnet to be a magnet, and how can we control a magnet's behavior? These are the questions that University at Buffalo researcher Igor Zutic, a theoretical physicist, has been exploring over many years.

He is one of many scientists who believe that magnets could revolutionize computing, forming the basis of high-capacity and low-energy memory, data storage and data transfer devices.

Today, in a commentary in Science, Zutic and fellow UB physicist John Cerne, who studies magnetism experimentally, discuss an exciting advancement: A study by Japanese scientists showing that it is possible to turn a material's magnetism on and off at room temperature.

A material's magnetism is determined by a property all electrons possess: something called "spin." Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons possess the same spin. Individual spins are akin to tiny bar magnets, which have north and south poles.

In the Japanese study, which also appears in the current issue of Science, a team led by researchers at Tohoku University added cobalt to titanium dioxide, a nonmagnetic semiconductor, to create a new material that, like a chameleon, can transform from a paramagnet (a nonmagnetic material) to a ferromagnet (a magnetic material) at room temperature.

To achieve change, the researchers applied an electric voltage to the material, exposing the material to extra electrons. As Zutic and Cerne explain in their commentary, these additional electrons -- called "carriers" -- are mobile and convey information between fixed cobalt ions that causes the spins of the cobalt electrons to align in one direction.

In an interview, Zutic calls the ability to switch a magnet "on" or "off" revolutionary. He explains the promise of magnet- or spin-based computing technology -- called "spintronics" -- by contrasting it with conventional electronics.

Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

In their Science commentary, Zutic and Cerne write that chameleon magnets could "help us make more versatile transistors and bring us closer to the seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task."

"Large applied magnetic fields can enforce the spin alignment in semiconductor transistors," they write. "With chameleon magnets, such alignment would be tunable and would require no magnetic field and could revolutionize the role ferromagnets play in technology."

In an interview, Zutic says that applying an electric voltage to a semiconductor injected with cobalt or other magnetic impurities may be just one way of creating a chameleon magnet.

Applying heat or light to such a material could have a similar effect, freeing electrons that can then convey information about spin alignment between ions, he says.

The so-far elusive heat-based chameleon magnets were first proposed by Zutic in 2002. With his colleagues, Andre Petukhov of the South Dakota School of Mines and Technology, and Steven Erwin of the Naval Research Laboratory, he elucidated the behavior of such magnets in a 2007 paper.

The concept of nonmagnetic materials becoming magnetic as they heat up is counterintuitive, Zutic says. Scientists had long assumed that orderly, magnetic materials would lose their neat, spin alignments when heated -- just as orderly, crystalline ice melts into disorderly water as temperatures rise.

The carrier electrons, however, are the key. Because heating a material introduces additional carriers that can cause nearby electrons to adopt aligned spins, heating chameleon materials -- up to a certain temperature -- should actually cause them to become magnetic, Zutic explains. His research on magnetism is funded by the Department of Energy, Office of Naval Research, Air Force Office of Scientific Research and the National Science Foundation.


Contact: Charlotte Hsu
University at Buffalo

Related biology technology :

1. GeoVax Labs Announces Availability of 2010 Annual Report and Presidents Letter to Stockholders
2. Stanford and SanBio Announce a Clinical Trial of Cell Therapy for Stroke Disability
3. Health Diagnostic Laboratory, Inc. (HDL, Inc.) Announces Availability of Galectin-3 Testing Service in Partnership With BG Medicine
4. Quanterix Announces Publication of Novel Method Expanding Single Molecule Detection Capability
5. Cadence Pharmaceuticals Announces U.S. Launch and Availability of OFIRMEV™ (acetaminophen) Injection
6. WaferGen Announces General Availability of Quick-Turnaround SmartChip Custom Panels
7. Science advisor to the US EPA to speak to industry, academic leaders on sustainability innovations
8. Breakthrough e-display means electronics with high speed, high readability and low power usage
9. Cellectis Bioresearch Announces Availability of Research Kits Through New Online E-Store
10. Epitomics, Inc. Announces Worldwide Availability of LRRK2 Antibodies Developed in Partnership With The Michael J. Fox Foundation
11. Cord Blood America CEO Matthew Schissler Discusses Projects in China, South America, Afford-A-Cord, and Profitability
Post Your Comments:
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... SILVER SPRING, Md. , June 23, 2016 ... evidence collected from the crime scene to track the criminal ... sick, and the U.S. Food and Drug Administration (FDA) uses ... Sound far-fetched? It,s not. ... whole genome sequencing to support investigations of foodborne illnesses. Put ...
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
(Date:6/23/2016)... June, 23, 2016  The Biodesign Challenge (BDC), a ... ways to harness living systems and biotechnology, announced its ... in New York City . ... students, showcased projects at MoMA,s Celeste Bartos Theater during ... , MoMA,s senior curator of architecture and design, and ...
Breaking Biology Technology:
(Date:4/19/2016)... 2016 The new GEZE SecuLogic ... web-based "all-in-one" system solution for all door components. It ... the door interface with integration authorization management system, and ... The minimal dimensions of the access control and the ... installations offer considerable freedom of design with regard to ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
(Date:3/23/2016)... , March 23, 2016 ... erhöhter Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender ... das Unternehmen mit SpeechPro zusammenarbeitet, um erstmals ... Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im Rahmen ...
Breaking Biology News(10 mins):