Navigation Links
Cellular construction methods emulated

This release is available in German.

Not only is our body made of individual organs, our cells themselves are made of tiny organelles, a variety of separate compartments that fulfill different tasks. Such functional, nanostructured systems would also be useful for technical applications, such as biosensors, self-repairing materials, optoelectronic components, or nanocapsules. However, it has not been possible to recreate structures with sufficient complexity in the lab. Researchers in the Netherlands, led by Jan van Esch at the Universities of Delft and Groningen as well as the BioMaDe Technology Foundation, are now pursuing a new angle. As they report in the journal Angewandte Chemie, they allow surfactants and gelators to form aggregates. These aggregates coexist without interfering with each other and thus make versatile, highly complex structures with separate compartments.

Cells contain various components, such as channels, motors, structural frameworks (cytoskeleton), and power plants (mitochondria). In order for these to form, their building blocks, mainly proteins and lipids, must recognize each other and form the correct assembly by self-aggregation. In addition, it is critical that compatible components do not separate into different phases: when proteins fold, the water-loving (hydrophilic) and water-repellent (hydrophobic) parts of the molecule stay far away from each other and aggregate with like-minded components. Biomembranes are formed when many small lipid molecules aggregate such that their hydrophobic tails face inward together and their hydrophilic heads point outward toward the aqueous medium.

The Dutch team imitated this concept by using two types of self-aggregating compounds: surfactants and gelators. Like the lipids in natural membranes, surfactants have a hydrophilic segment and a hydrophobic segment and aggregate into structures such as membrane-like double layers or vesicles (bubbles). To imitate the forces involved in protein foldinghydrogen-bridge bonds and hydrophobic interactionsthe team used a disk-shaped gelator, in which hydrophobic and hydrophilic molecular components alternate in concentric rings. Just as for proteins, like attracts like. This causes the disks to stack together into columns, which forms long fibers, generating a three-dimensional network in the solution to make a gel.

The researchers allow their surfactants and gelators to aggregate together. In this process, the different components take no notice of each other. This independent formation of different supramolecular structures within a single system is called orthogonal self-aggregation. This results in the formation of novel, complex, compartmentalized architectures, for example, interpenetrating but independent networks or vesicle configurations that coexist with gel fibers.


Contact: Jan van Esch

Related biology technology :

1. First Live U.S. Demonstration of Cellvizio GI In Vivo Cellular Imaging Technology to Occur at Johns Hopkins Conference
2. Chris Tihansky Appointed President of In Vivo Cellular Imaging Leader Cellvizio Inc.
3. National Stem Cell Holding Announces Patent Application for Newly Discovered Cellular Derived Biomaterials for Anti-Aging Applications
4. EpiCept to Present Pre-clinical Advances of Myc Oncogene Directed Drug Discovery at Assays and Cellular Targets Conference
5. Intra-Cellular Therapies Provides Overview of its Proprietary Portfolio of Compounds for the Treatment of Female Sexual Dysfunction (FSD)
6. Enerkem announces progress on construction of Canadas first cellulosic ethanol plant
7. DNA is blueprint, contractor and construction worker for new structures
8. White Paper Details Infection Control Challenges Hospitals Must Address During Construction
9. China-Biotics, Inc. Receives Approval to Begin Construction on Large-Scale Manufacturing Facility
10. TEI Biosciences Launches SurgiMend(TM) Collagen Matrix for Soft Tissue Reconstruction
11. Total Site Solutions Selected to Provide Construction Management Services for Existing Pharmaceutical and Biotech Customer for Data Center Expansion Project
Post Your Comments:
Related Image:
Cellular construction methods emulated
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and Zachary Apte, ... their initial angel funding process. Now, they are paying it forward to other ... stage investments in the microbiome space. In this, they join other successful ...
(Date:11/24/2015)... , Nov. 24, 2015 Cepheid (NASDAQ: ... speaking at the following conference, and invited investors to ... NY      Tuesday, December 1, 2015 at 11.00 ... NY      Tuesday, December 1, 2015 at 11.00 ... Conference, New York, NY      Tuesday, ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... But unless it is bound to proteins, copper is also toxic to cells. ... at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in ...
(Date:11/24/2015)... Global, Inc., a worldwide provider of clinical research services headquartered in ... company has set a new quarterly earnings record in Q3 of ... for Q3 of 2014 to Q3 of 2015.   ... with the establishment of an Asia-Pacific office ... Kingdom and Mexico , with the ...
Breaking Biology Technology:
(Date:10/29/2015)... YORK , Oct. 29, 2015 ... technology, announced a partnership with 2XU, a global ... to deliver a smart hat with advanced bio-sensing ... and other athletes to monitor key biometrics to ... the strategic partnership, the two companies will bring together ...
(Date:10/27/2015)... 2015 Synaptics Inc. (NASDAQ: SYNA ), the ... has adopted the Synaptics ® ClearPad ® ... its newest flagship smartphones, the Nexus 5X by LG ... --> --> Synaptics works closely ... collaboration in the joint development of next generation technologies. ...
(Date:10/26/2015)... -- Delta ID Inc., a company focused on bringing secure ... announced its ActiveIRIS® technology powers the iris recognition feature ... NTT DOCOMO, INC in Japan . ... include iris recognition technology, after a very successful introduction ... 2015, world,s first smartphone to have this capability. ...
Breaking Biology News(10 mins):