Navigation Links
Catching molecular motion at just the right time
Date:9/21/2011

EUGENE, Ore. -- (Sept. 21, 2011) -- University of Oregon researchers have devised a mathematically rich analytic approach to account for often-missing thermodynamic and molecular parameters in molecular dynamic simulations.

The new approach, which returns atomistic-level data into the time frame of the macroscopic world, is detailed in a paper appearing online ahead of regular publication in the journal Physical Review E. The method is all about timing, says Marina G. Guenza, professor of theoretical physical chemistry, and may help reduce trial-and-error experimentation required in manufacturing when such information is missing.

Molecular dynamic simulations are indispensable tools -- a natural partner of experiments and theory -- that help scientists understand the properties of new materials and processes by providing a view at the resolution of atoms. Simulations expedite the development of new materials by showing how those with a specific atomistic structure behave in various conditions, for example when they are strained or frozen.

Simulations of polymers and biological systems have been used since the 1990s. That effort has focused on the short-time motion of macromolecules described in atomistic detail, which, in addition to plastics and glasses, also applies to DNA and proteins, Guenza said.

However, modelers remove critical pieces of information, such as atom-level activity, to scale back simulations to cover only generic components and access longer times in an accessible simulation run. This technique provides helpful but incomplete data about behavioral responses, Guenza said. Simulations in which atomistic information is withheld are called coarse-grained models.

"These are big molecules," she said. "They move slowly. It is difficult to set up a simulation where the atomistic definition is included and still be able to see things happen on the long time scale, which can be really important. Coarse-graining allows one to simulate macromolecules for longer time, but, because some information is eliminated, the motion measured is unrealistically fast."

Entropy -- a loss of thermodynamic energy -- and surface friction are lost in these simulations, she said. Simulations at the atomistic level depict motion occurring in femtoseconds. (A femtosecond is a millionth of a nanosecond; a nanosecond, a billionth of a second.)

To understand what happens in macroscopic systems, you have to look at movement over longer periods of time -- over seconds, says Ivan Lyubimov, a UO doctoral student in chemistry and lead author. "When you try to simulate a second's worth of information at the atomistic level, with all the details included, it might take one or two years for the computer to run the simulation, and you'd still have errors due to numerical algorithms," he said.

Guenza and Lyubimov looked at simulations where thousands of macromolecules of polyethelene are represented as interacting soft particle, i.e. a coarse-grained model, and applied an original theory that refocuses the information missing in the simulations.

Guenza -- a member of the UO's Institute of Theoretical Science, Materials Science Institute and Institute of Molecular Biology and Lyubimov first detailed the basics of their theoretical formula in 2010 in the Journal of Chemical Physics.

Their "first-principle" approach looks at the loss of energy, due to the change in entropy, caused by the coarse-graining of the molecule in simulations. Coarse-graining also affects the surface of molecules in simulation, so the formalism accounts for the loss of friction as well.

"We were able to show that if you run your simulation with less detail, we can correct for these factors, and you'll produce the correct motion -- the dynamics -- of the real system," Guenza said. "We have done a lot of tests with different experiments and simulations, and our method works pretty well. No one else has been able to do this with a theoretical solution."

The method, the authors wrote, is different from others currently in use, because it is analytical rather than numerical. It removes the need for separate, time-consuming atomistic simulations to account for missing information obtained from coarse-grained simulations.

"Parameters can be varied for different systems, depending on the molecule size, density and temperature," Lyubimov said. "You can make realistic predictions for the type of material you want to study, at much less expense. You don't have to know all of the details, but you do need a certain number of parameters based on the chemical structure that you want to study."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology technology :

1. Catching the lightwave: Nano-mechanical sensors wired by photonics
2. Global Molecular Cytogenetics Industry
3. ImaginAb, Inc. Announces Formation of Singapore Subsidiary, ImaginAb Molecular Imaging Pte Ltd.
4. Amsterdam Molecular Therapeutics Licenses Additional Novel Gene Therapy Vectors from National Institutes of Health
5. Amsterdam Molecular Therapeutics Reports Half-Year Results 2011
6. Chemists create molecular polyhedron -- and potential to enhance industrial and consumer products
7. Molecular Detection Inc. and Eldan Electronic Instruments Announce Distribution Agreement for Detect-Ready® MRSA Panel in Israel
8. Nanotech: injections or sampling? New molecular syringes under testing
9. Molecular Devices Enables Intuitive Functionality at Your Fingertips on the Apple iPad with the Latest SoftMax Pro Software
10. Amsterdam Molecular Therapeutics Files Glybera® European Marketing Application for Re-examination
11. Amsterdam Molecular Therapeutics Appoints Dr. Carlos R. Camozzi as Chief Medical Officer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Catching molecular motion at just the right time
(Date:10/11/2017)... , ... October 11, 2017 , ... ComplianceOnline’s Medical Device ... on 7th and 8th June 2018 in San Francisco, CA. The Summit brings together ... as several distinguished CEOs, board directors and government officials from around the world to ...
(Date:10/11/2017)... ... ... Disappearing forests and increased emissions are the main causes of the evolving ... those living in larger cities are affected by air pollution related diseases. , That ... countries globally - decided to take action. , “I knew I had to take ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give ... Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
Breaking Biology Technology:
(Date:4/17/2017)... Florida , April 17, 2017 NXT-ID, ... technology company, announces the filing of its 2016 Annual Report on ... and Exchange Commission. ... on Form 10-K is available in the Investor Relations section of ... as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... Research and Markets has announced the addition ... their offering. ... tracking market to grow at a CAGR of 30.37% during the ... 2017-2021, has been prepared based on an in-depth market analysis with ... its growth prospects over the coming years. The report also includes ...
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
Breaking Biology News(10 mins):