Navigation Links
Carnegie Mellon scientists create rainbow of fluorescent probes
Date:3/25/2010

SAN FRANCISCOScientists at Carnegie Mellon University's Department of Chemistry and Molecular Biosensor and Imaging Center (MBIC) are advancing the state-of-the-art in live cell fluorescent imaging by developing a new class of fluorescent probes that span the spectrum from violet to the near-infrared. The new technology, called fluoromodules, can be used to monitor biological activities of individual proteins in living cells in real time. At the 239th national meeting of the American Chemical Society, Carnegie Mellon chemists and MBIC scientists will discuss recent advances in their fluoromodule technology that have produced diverse and photostable probes.

Fluoromodules, which consist of dye-protein complexes, provide alternatives to common fluorescent proteins, such as Green Fluorescent Protein (GFP), but with a wider selection of colors and the potential for significantly greater photostability, which allows scientists to image the dye for longer periods of time. This is made possible by the fact that the dye is noncovalently bound to the protein, which allows fresh dye to replace bleached dye.

"We initially isolated and characterized fluoromodules that generate fluorescence from the fluorogenic dyes thiazole orange and malachite green. We are now expanding our repertoire by synthesizing new dyes that emit in the orange and violet regions of the spectrum, and engineering proteins that bind to the new dyes with great affinity," said Chemistry Professor Bruce Armitage, co-director of the Center for Nucleic Acid Science and Technology at Carnegie Mellon and a member of the MBIC team developing the fluoromodules.

Fluoromodules are made of a fluorogen-activating protein (FAP) and a non-fluorescent dye called a fluorogen. The FAP, which is genetically expressed in a cell and tagged to a protein of interest, does not become fluorescent until it binds with its fluorogen. With the novel FAPs and associated fluorogens created by the MBIC team, the researchers can control when a target protein lights up, allowing them to track proteins on the cell surface and within living cells in very simple and direct ways, eliminating cumbersome experimental steps.

Recent advances in the MBIC fluoromodule technology being presented at the ACS meeting include:

  • Working with a FAP that had a low affinity for the fluorogenic dye dimethlindole red (DIR), graduate student Hayriye zhalici-nal used PCR mutagenesis to introduce mutations into the FAP's genetic sequence. A small number of mutations increased several-fold the protein's affinity for DIR, enabling very specific and selective binding of the FAP to its dye partner (DIR). zhalici-nal will present this work at 9:50 a.m., Thursday, March 25 during the Follow-on Biologics: Protein Engineering session located in room 201 West Bldg. in the Moscone Center.

  • Graduate student Nathaniel Shank synthesized a modified DIR, making it eight-times more photostable. This significant improvement could have an impact on single molecule imaging. Additionally, the modified DIR emits in the orange range of the spectrum, adding another color to the fluoromodule toolkit being developed at MBIC. Shank will present this work at 8 p.m., Tuesday, March 23 during the Total Synthesis of Complex Molecules, Material Devices & Switches, Physical Organic Chemistry poster session located in Hall D of the Moscone Center.

  • By synthesizing a new dye and identifying FAPs that bind to it, research chemist Gloria Silva and graduate student Kim Zanotti developed a fluoromodule that emits fluorescence in the violet, which is a welcome addition to a very limited number of probes able to emit in the violet portion of the spectrum. Zanotti will present this work a 6 p.m., Tuesday, March 23 during the poster session located in room 3009/3011 West Bldg. in the Moscone Center.


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-600-0029
Carnegie Mellon University
Source:Eurekalert

Related biology technology :

1. 2010 Carnegie Science Awardees Announced
2. Carnegie Mellon MRI technology that noninvasively locates, quantifies specific cells in the body
3. MIT scientists transform polyethylene into a heat-conducting material
4. Scientists discover how ocean bacterium turns carbon into fuel
5. Scientists glimpse nanobubbles on super nonstick surfaces
6. Princeton scientists find an equation for materials innovation
7. Scientists glimpse nanobubbles on super non-stick surfaces
8. Scientists transplant nose of mosquito, advance fight against malaria
9. Penn material scientists turn light into electrical current using a golden nanoscale system
10. Seeing the quantum in chemistry: JILA scientists control chemical reactions of ultracold molecules
11. NFCR Scientists Discover Brain Tumor's “Escape Path”
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2017)... NJ (PRWEB) , ... June 20, 2017 , ... Do ... makes the transition from being a trusted supplier in the weighing industry, to extending ... cell extractions, ELISA essays, enzyme reactions, immunoassays, hybridizations and more, allowing for its ...
(Date:6/19/2017)... ... June 19, 2017 , ... Tunnell Consulting ... 50 years. One of the biggest challenges faced by life sciences, biotech and pharmaceuticals ... services team is Kati Abraham , who is well known in the industry ...
(Date:6/16/2017)... ... 2017 , ... CTNext , Connecticut’s go-to resource for entrepreneurial support, today ... at Chelsea Piers in Stamford. , Nine finalists, all of whom are Connecticut-based companies ... opportunity to secure $10,000 awards to help support business growth. The winners included:, ...
(Date:6/15/2017)... TX (PRWEB) , ... June 15, 2017 , ... ... in Saranas, a promising new medical device startup. Dan Parsley, angelMD’s SVP of ... by angelMD members, and this angelMD syndicate is part of Saranas’ recently announced ...
Breaking Biology Technology:
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
(Date:3/27/2017)... ROCKVILLE CENTRE, N.Y. , March 27, 2017 ... by Healthcare Information and Management Systems Society (HIMSS) ... Analytics Outpatient EMR Adoption Model sm . In ... top 12% of U.S. hospitals using an electronic ... recognized CHS for its high level of EMR ...
(Date:3/23/2017)... 2017 Research and Markets has announced the ... Trends - Industry Forecast to 2025" report to their offering. ... The Global ... of around 8.8% over the next decade to reach approximately $14.21 ... market estimates and forecasts for all the given segments on global ...
Breaking Biology News(10 mins):