Navigation Links
Carbyne morphs when stretched
Date:7/21/2014

Applying just the right amount of tension to a chain of carbon atoms can turn it from a metallic conductor to an insulator, according to Rice University scientists.

Stretching the material known as carbyne -- a hard-to-make, one-dimensional chain of carbon atoms -- by just 3 percent can begin to change its properties in ways that engineers might find useful for mechanically activated nanoscale electronics and optics.

The finding by Rice theoretical physicist Boris Yakobson and his colleagues appears in the American Chemical Society journal Nano Letters.

Until recently, carbyne has existed mostly in theory, though experimentalists have made some headway in creating small samples of the finicky material. The carbon chain would theoretically be the strongest material ever, if only someone could make it reliably.

The first-principle calculations by Yakobson and his co-authors, Rice postdoctoral researcher Vasilii Artyukhov and graduate student Mingjie Liu, show that stretching carbon chains activates the transition from conductor to insulator by widening the material's band gap. Band gaps, which free electrons must overcome to complete a circuit, give materials the semiconducting properties that make modern electronics possible.

In their previous work on carbyne, the researchers believed they saw hints of the transition, but they had to dig deeper to find that stretching would effectively turn the material into a switch.

Each carbon atom has four electrons available to form covalent bonds. In their relaxed state, the atoms in a carbyne chain would be more or less evenly spaced, with two bonds between them. But the atoms are never static, due to natural quantum uncertainty, which Yakobson said keeps them from slipping into a less-stable Peierls distortion.

"Peierls said one-dimensional metals are unstable and must become semiconductors or insulators," Yakobson said. "But it's not that simple, because there are two driving factors."

One, the Peierls distortion, "wants to open the gap that makes it a semiconductor." The other, called zero-point vibration (ZPV), "wants to maintain uniformity and the metal state."

Yakobson explained that ZPV is a manifestation of quantum uncertainty, which says atoms are always in motion. "It's more a blur than a vibration," he said. "We can say carbyne represents the uncertainty principle in action, because when it's relaxed, the bonds are constantly confused between 2-2 and 1-3, to the point where they average out and the chain remains metallic."

But stretching the chain shifts the balance toward alternating long and short (1-3) bonds. That progressively opens a band gap beginning at about 3 percent tension, according to the computations. The Rice team created a phase diagram to illustrate the relationship of the band gap to strain and temperature.

How carbyne is attached to electrodes also matters, Artyukhov said. "Different bond connectivity patterns can affect the metallic/dielectric state balance and shift the transition point, potentially to where it may not be accessible anymore," he said. "So one has to be extremely careful about making the contacts."

"Carbyne's structure is a conundrum," he said. "Until this paper, everybody was convinced it was single-triple, with a long bond then a short bond, caused by Peierls instability." He said the realization that quantum vibrations may quench Peierls, together with the team's earlier finding that tension can increase the band gap and make carbyne more insulating, prompted the new study.

"Other researchers considered the role of ZPV in Peierls-active systems, even carbyne itself, before we did," Artyukhov said. "However, in all previous studies only two possible answers were being considered: either 'carbyne is semiconducting' or 'carbyne is metallic,' and the conclusion, whichever one, was viewed as sort of a timeless mathematical truth, a static 'ultimate verdict.' What we realized here is that you can use tension to dynamically go from one regime to the other, which makes it useful on a completely different level."

Yakobson noted the findings should encourage more research into the formation of stable carbyne chains and may apply equally to other one-dimensional chains subject to Peierls distortions, including conducting polymers and charge/spin density-wave materials.


'/>"/>
Contact: David Ruth
david@rice.edu
713-348-6327
Rice University
Source:Eurekalert  

Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Carbyne morphs when stretched
(Date:2/24/2017)... KNOXVILLE, Tenn. , Feb. 24, 2017 /PRNewswire/ ... ) ("Provectus" or the "Company"), a clinical-stage oncology ... information regarding the deadline to participate in its ... million units, consisting of shares of common stock ... stockholders and holders of listed warrants. ...
(Date:2/24/2017)... 2017 China Cord Blood Corporation (NYSE: ... provider of cord blood collection, laboratory testing, hematopoietic stem ... its unaudited financial results for the third quarter and ... 31, 2016. Third Quarter of Fiscal 2017 ... of fiscal 2017 increased by 18.6% to RMB200.9 million ...
(Date:2/24/2017)... , Feb. 24, 2017  OncoSec Medical Incorporated ("OncoSec") ... will host a Key Opinion Leader event to highlight ... oral and poster presentation at the upcoming 2017 ASCO-SITC ... KOL event will be held in-person and via live ... / 9:00 AM PST at the Lotte New York ...
(Date:2/23/2017)... 2017 /PRNewswire/ - The Fight Against Cancer Innovation Trust ... are pleased to report that Fusion Pharmaceuticals Inc. (Fusion) ... & Johnson Innovation – JJDC, Inc. (JJDC) as the ... TPG Biotechnology Partners, and Genesys Capital, as well as ... ...
Breaking Biology Technology:
(Date:2/3/2017)... A new independent identity strategy consultancy firm ... . Designed to fill a critical niche in technical ... partners Mark Crego and Janice Kephart ... identity expertise that span federal governments, the 9/11 Commission, ... combined expertise has a common theme born from a ...
(Date:2/2/2017)... 2, 2017  EyeLock LLC, a market leader of ... paper " What You Should Know About Biometrics in ... user authenticity is a growing concern. In traditional schemes, ... However, traditional authentication schemes such as username/password suffer from ... authentication offers an elegant solution to the problem of ...
(Date:2/1/2017)... , February 1, 2017 IDTechEx Research, a ... emerging technology, announces the availability of a new report, Sensors ... Continue Reading ... ... and collaborative robots. Source: IDTechEx Report "Sensors for Robotics: Technologies, Markets ...
Breaking Biology News(10 mins):