Navigation Links
Caltech researchers find that disorder is key to nanotube mystery
Date:8/12/2011

PASADENA, Calif.Scientists often find strange and unexpected things when they look at materials at the nanoscalethe level of single atoms and molecules. This holds true even for the most common materials, such as water.

Case in point: In the last couple of years, researchers have observed that water spontaneously flows into extremely small tubes of graphite or graphene, called carbon nanotubes. This unexpected observation is intriguing because carbon nanotubes hold promise in the emerging fields of nanofluidics and nanofiltration, where nanotubes might be able to help maintain tiny flows or separate impurities from water. However, no one has managed to explain why, at the molecular level, a stable liquid would want to confine itself to such a small area.

Now, using a novel method to calculate the dynamics of water molecules, Caltech researchers believe they have solved the mystery. It turns out that entropy, a measurement of disorder, has been the missing key.

"It's a pretty surprising result," says William Goddard, the Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics at Caltech and director of the Materials and Process Simulation Center. "People normally focus on energy in this problem, not entropy."

That's because water forms an extensive network of hydrogen bonds, which makes it very stable. Breaking those strong interactions requires energy. And since some bonds have to be broken in order for water to flow into small nanotubes, it would seem unlikely that water would do so freely.

"What we found is that it's actually a trade off," Goddard says. "You lose some of that good energy stabilization from the bonding, but in the process you gain in entropy."

Entropy is one of the driving forces that determine whether a process will occur spontaneously. It represents the number of ways a system can exist in a particular state. The more arrangements available to a system, the greater its disorder, and the higher the entropy. And in general, nature proceeds toward disorder.

When water is ideally bonded, all of the hydrogen bonds lock the molecules into place, restricting their freedom and keeping water's entropy low. What Goddard and postdoctoral scholar Tod Pascal found is that in the case of some nanotubes, water gains enough entropy by entering the tubes to outweigh the energy losses incurred by breaking some of its hydrogen bonds. Therefore, water flows spontaneously into the tubes.

Goddard and Pascal explain their findings in a paper recently published in the Proceedings of the National Academy of Sciences (PNAS). They looked at carbon nanotubes with diameters between 0.8 and 2.7 nanometers and found three different reasons why water would flow freely into the tubes, depending on diameter.

For the smallest nanotubesthose between 0.8 and 1.0 nanometers in diameterthe tubes are so minuscule that water molecules line up nearly single file within them and take on a gaslike state. That means the normal bonded structure of liquid water breaks down, giving the molecules greater freedom of motion. This increase in entropy draws water into the tubes.

At the next level, where the nanotubes have diameters between 1.1 and 1.2 nanometers, confined water molecules arrange themselves in stacked, icelike crystals. Goddard and Pascal found such nanotubes to be the perfect sizea kind of Goldilocks matchto accommodate crystallized water. These crystal-bonding interactions, not entropy, make it favorable for water to flow into the tubes.

On the largest scale studiedinvolving tubes whose diameters are still only 1.4 to 2.7 nanometers widethe researchers found that the confined water molecules behave more like liquid water. However, once again, some of the normal hydrogen bonds are broken, so the molecules exhibit more freedom of motion within the tubes. And the gains in entropy more than compensate for the loss in hydrogen bonding energy.

Because the insides of the carbon nanotubes are far too small for researchers to examine experimentally, Goddard and Pascal studied the dynamics of the confined water molecules in simulations. Using a new method developed by Goddard's group with a supercomputer, they were able to calculate the entropy for the individual water molecules. In the past, such calculations have been difficult and extremely time-consuming. But the new approach, dubbed the two-phase thermodynamic model, has made the determination of entropy values relatively easy for any system.

"The old methods took eight years of computer processing time to arrive at the same entropies that we're now getting in 36 hours," Goddard says.

The team also ran simulations using an alternative description of waterone where water had its usual properties of energy, density, and viscosity, but lacked its characteristic hydrogen bonding. In that case, water did not want to flow into the nanotubes, providing additional proof that water's naturally occurring low entropy due to extensive hydrogen bonding leads to it spontaneously filling carbon nanotubes when the entropy increases.

Goddard believes that carbon nanotubes could be used to design supermolecules for water purification. By incorporating pores with the same diameters as carbon nanotubes, he thinks a polymer could be made to suck water out of solution. Such a potential application points to the need for a greater understanding of water transport through carbon nanotubes.


'/>"/>

Contact: Deborah Williams-Hedges
debwms@caltech.edu
626-395-3227
California Institute of Technology
Source:Eurekalert  

Related biology technology :

1. In the battle to relieve back aches, Cornell researchers create bioengineered spinal disc implants
2. Researchers target, switch off serotonin-producing neurons in mice
3. Researchers create the worlds most advanced genetic map
4. Penn researchers show single drug and soft environment can increase platelet production
5. SANYO and BD Biosciences Collaborate to Offer Researchers Valuable Technology and Research Tools
6. TUM researchers develop environmentally friendly process to improve storage stability of probiotics
7. Researchers image graphene electron clouds, revealing how folds can harm conductivity
8. Researchers clarify properties of confined water within single-walled carbon nanotube pores
9. Researchers engineer the environment for stem cell development to control differentiation
10. Penn researchers break light-matter coupling strength limit in nanoscale semiconductors
11. Researchers From More Than 30 Countries Share Findings About the Use of Ultrasound in the Prevention, Diagnosis and Treatment of Heart Disease
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Caltech researchers find that disorder is key to nanotube mystery
(Date:8/17/2017)... Village, CA (PRWEB) , ... August 17, 2017 ... ... technology for cancer research and personalized medicine, today announced the launch of a ... Kansas City, Missouri. The study’s goal is to evaluate the potential for early ...
(Date:8/16/2017)... ... August 16, 2017 , ... ... different cell type. Many treatments for specific cancers, such as breast, prostate, or ... treatment is androgen deprivation therapy for advanced prostate cancer. , This therapy ...
(Date:8/16/2017)... ... August 16, 2017 , ... We are proud to announce ... at our Dilworth, MN site. The inspection took place Monday, July 31st through ... part of a routine Bioresearch Monitoring Program (BIMO) with the USFDA wherein multiple ...
(Date:8/15/2017)... STANFORD, Calif. , Aug. 15, 2017 After spending ... resources and support with crowdsourced data collection, GeneFo now offers this ... interested in aligning and amplifying support, adherence, and data collection vis ... with medical foundations mark the successful launch of this offer. ... GeneFo ...
Breaking Biology Technology:
(Date:4/24/2017)... , April 24, 2017 ... and partner with  Identity Strategy Partners, LLP (IdSP) ... "With or without President Trump,s March 6, 2017 ... Terrorist Entry , refugee vetting can be instilled with ... resettlement. (Right now, all refugee applications are suspended ...
(Date:4/13/2017)... SANTA MONICA, Calif. , April 13, 2017 /PRNewswire/ ... New York will feature emerging and ... Innovation Summits. Both Innovation Summits will run alongside the ... variety of speaker sessions, panels and demonstrations focused on ... east coast,s largest advanced design and manufacturing event will ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
Breaking Biology News(10 mins):