Navigation Links
CU researchers shed light on light-emitting nanodevice
Date:10/9/2007

An interdisciplinary team of Cornell nanotechnology researchers has unraveled some of the fundamental physics of a material that holds promise for light-emitting, flexible semiconductors.

The discovery, which involved years of perfecting a technique for building a specific type of light-emitting device, is reported in the Sept. 30 online publication of the journal Nature Materials.

The interdisciplinary team had long studied the molecular semiconductor ruthenium tris-bipyridine. For many reasons, including its ability to allow electrons and holes (spaces where electrons were before they moved) to pass through it easily, the material has the potential to be used for flexible light-emitting devices. Sensing, microscopy and flat-panel displays are among its possible applications.

The researchers set out to understand the fundamental physics of the material -- that is, what happens when it encounters an electric field, both at the interfaces and inside the film. By fabricating a device out of the ruthenium metal complex that was spin-coated onto an insulating substrate with pre-patterned gold electrodes, the scientists were able to use electron force microscopy to measure directly the electric field of the device.

A long-standing question, according to George G. Malliaras, associate professor of materials science and engineering, director of the Cornell NanoScale Science and Technology Facility and one of the co-principal investigators, was whether an electric field, when applied to the material, is concentrated at the interfaces or in the bulk of the film.

The researchers discovered that it was at the interfaces -- two gold metal electrodes sandwiching the ruthenium complex film -- which was a huge step forward in knowing how to build and engineer future devices.

"So when you apply the electric field, ions in the material move about, and that creates the electric fields at the interfaces," Malliaras explained.

Essential to the effort was the ability to pattern the ruthenium complex using photolithography, a technique not normally used with such materials and one that took the researchers more than three years to perfect, using the knowledge of experts in nanofabrication, materials and chemistry.

The patterning worked by laying down a gold electrode and a polymer called parylene. By depositing the ruthenium complex on top of the parylene layer and filling in an etched gap between the gold electrodes, the researchers were then able to peel the parylene material off mechanically, leaving a perfect device.

Ruthenium tris-bipyridine has energy levels well suited for efficient light emission of about 600 nanometers, said Hctor D. Abrua, the E.M. Chamot Professor of Chemistry, and a principal co-investigator. The material, which has interested scientists for many years, is ideal for its stability in multiple states of oxidation, which, in turn, allows it to serve as a good electron and hole transporter. This means that a single-layer device can be made, simplifying the manufacturing process.

"It's not fabulous, but it has a reasonable emission efficiency," Abrua said. "One of the drawbacks is it has certain instabilities, but we have managed to mitigate most of them."

Among the other authors were co-principal investigators Harold G. Craighead, the C.W. Lake Jr. Professor of Engineering, and John A. Marohn, associate professor of chemistry and chemical biology.


'/>"/>
Contact: Press Relations Office
pressoffice@cornell.edu
607-255-6074
Cornell University News Service
Source:Eurekalert

Related biology technology :

1. Tapping hidden assets: Wisconsin researchers who can create jobs
2. National Academies induct five UW researchers
3. Wisconsin researchers defend stem cell company
4. NimbleGen partners with leading researchers
5. Medical College researchers win federal grants
6. Researchers say scientific reporting needs more perspective, less hype
7. Congress passes bill to ease researchers collaboration worries
8. Researchers report development of embryonic stem cells without destroying embryo
9. New digs for UW AIDS researchers
10. Medical College researchers receive new grants to enhance discovery of heart-protecting anesthetics
11. Cloning ban too broad, stem-cell researchers argue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... SAN DIEGO , Dec. 8, 2016 /PRNewswire/ ... presented demonstrating the role of the Breast Cancer ... stage, ER+ breast cancer are most at-risk for ... therapy. Data include results from three studies advancing ... provide information related to tumor biology and inform ...
(Date:12/8/2016)... 8, 2016 Oxford ... erweitert seine Palette an anpassbaren SureSeq™ NGS-Panels mit ... Panels, das ein schnelles und kostengünstiges Studium der ... bietet eine Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, ... einzigen kleinen Panel und ermöglicht eine individuelle Anpassung ...
(Date:12/8/2016)... CA (PRWEB) , ... December 08, 2016 , ... ... as finalists in the World Technology Awards. uBiome is one of just six ... across all categories. , In addition to uBiome, companies nominated as finalists in ...
(Date:12/8/2016)... Dec. 8, 2016 Savannah River Remediation ... and selected NewTechBio,s NT-MAX Lake & Pond ... beneficial bacteria, in conjunction with Hexa Armor/ Rhombo ... with National Pollutant Discharge Elimination System requirements. ... a steady history of elevated pH levels, above ...
Breaking Biology Technology:
(Date:12/7/2016)... , Dec. 7, 2016   Avanade ... successful Formula One teams in history, exploit biometric data ... stop performance and maintain the competitive edge against their ... 2016. Avanade has worked with Williams ... range of biometric data (heart rate, breathing rate, temperature ...
(Date:12/5/2016)... WASHINGTON , Dec. 5, 2016  The ... (NIJ), today published "Can CT Scans Enhance or ... examines the potential of supporting or replacing forensic ... a CT scan. In response to ... NIJ is exploring using CT scans as a ...
(Date:11/29/2016)... -- BioDirection, a privately held medical device company developing ... of concussion and other traumatic brain injury (TBI), announced ... with the U.S. Food and Drug Administration (FDA) to ... the meeting company representatives reviewed plans for clinical development ... of a planned pilot trial. "We ...
Breaking Biology News(10 mins):