Navigation Links
Building better structural materials
Date:12/13/2012

Washington, D.C. When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent. This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of research from a team including Carnegie's Ho-kwang "Dave" Mao.

Their breakthrough research on the behavior nickel nanocrystals under intense pressure is published December 14 by Science. Their findings could help physicists and engineers create stronger, longer-lasting materials. It can also help earth scientists understand tectonic events and seismicity.

It is believed that permanent changes to metallic grains when under pressure are associated with the movement of structural irregularities in the grains, called dislocations. But the deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead. According to computer analysis, this critical limit would occur in nanocrystals at sizes between 10 and 30 nm in size.

Experimental work on nanocrystals under pressure has been limited by technical hurdles. But new capabilities using a technique called radial diamond anvil cell x-ray diffraction has opened the door to moving beyond computer modeling and into the lab.

The team, led by Bin Chen of the Lawrence Berkeley National Laboratory, was able to show that the activities of the structural irregularities that accompany deformation were occurring even in nickel nanocrystals of 3 nanometers in size when they were compressed to higher than 183,000 times normal atmospheric pressure (18.5 gigapascals). This demonstrates that so-called dislocation-associated deformation is a function of both pressure and particle size, as previously thought, but that the particle size can be smaller than computer modeling had anticipated.

"These findings help constrain the fundamental physics of deformation under pressure on a very small scale," Mao said. "They also demonstrate the importance of the radial diamond anvil cell x-ray diffraction tool for helping us understand these processes."


'/>"/>

Contact: Ho-kwang Dave Mao
hmao@ciw.edu
202-478-8935
Carnegie Institution
Source:Eurekalert

Related biology technology :

1. HealthTech Capital Announces Awards for the HealthTech Conference 2012 - Building a Business in the New HealthTech Ecosystem
2. Building Wireless Solution More Important than Ever with New Tablets
3. New Study Building Framework to Bring Personalized Medicine to the Clinic
4. Arteriocyte Takes the Lead in Promoting Building Future Pipeline of Women in STEM Career Fields
5. Biobetters in Key Markets - Opportunities for Biotechnology Companies to Sustain Innovation with Low Risk and High Value Offerings
6. A better brain implant: Slim electrode cozies up to single neurons
7. Sitting still or going hunting: Which works better?
8. UMass Amherst, Harvard experts say better systems needed for medical device cybersecurity
9. Breathe Better With Clarity Allergy Center
10. Penn researchers study of phase change materials could lead to better computer memory
11. New research could mean faster computers and better mobile phones
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/16/2017)... ... August 16, 2017 , ... ... system, announced it has secured $2M in funding from an impressive group of ... Innovations, and SVG Thrive Fund. With this investment, 3Bar is broadening availability of ...
(Date:8/15/2017)... (PRWEB) , ... August 15, 2017 , ... Kapstone ... celebrating 10 years of successes helping medical technology companies and inventors develop and safeguard ... a renowned full-service national engineering firm with a portfolio of clients in the United ...
(Date:8/15/2017)... ... August 15, 2017 , ... The Conference Forum and ... programming through a series of upcoming panels and events. The partnership culminates with the ... Roosevelt Hotel in New York City. , “With our experience in producing the Immuno-Oncology ...
(Date:8/14/2017)... ... 2017 , ... The Conference Forum has confirmed the one-day agenda ... September 6, 2017 at the Marriott Copley Place in Boston, MA. , Returning as ... Regulatory Strategy, Pfizer Innovative Research Lab, Pfizer, who leads 19 industry speakers in discussing ...
Breaking Biology Technology:
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, 2017, ... the Genome hackathon at Microsoft,s headquarters in ... competition will focus on developing health and wellness apps ... Hack the Genome is the first hackathon ... The world,s largest companies in the genomics, tech and ...
Breaking Biology News(10 mins):