Navigation Links
Building better catalysts
Date:9/29/2011

SALT LAKE CITY, Sept. 29, 2011 University of Utah chemists developed a method to design and test new catalysts, which are substances that speed chemical reactions and are crucial for producing energy, chemicals and industrial products. By using the new method, the chemists also made a discovery that will make it easier to design future catalysts.

The discovery: the sizes and electronic properties of catalysts interact to affect how well a catalyst performs, and are not independent factors as was thought previously. Chemistry Professor Matt Sigman and doctoral student Kaid Harper, report their findings in the Friday, Sept. 30, 2011, issue of the journal Science.

"It opens our eyes to how to design new catalysts that we wouldn't necessarily think about designing, for a broad range of reactions," Sigman says. "We're pretty excited."

Sigman believes the new technique for designing and testing catalysts "is going to be picked up pretty fast," first by academic and then by industrial chemists, who "will see it's a simple way to rapidly design better catalysts."

The new study was funded by the National Science Foundation.

'Catalysts Make the World Go 'Round'

Catalysts speed chemical reactions without being consumed by those reactions. Their importance to society and the economy is tough to overstate. Products made with catalysts include medicines, fuels, foods and fertilizers.

Ninety percent of U.S. chemical manufacturing processes involve catalysts, which also are used to make more than one-fifth of all industrial products. Those processes consume much energy, so making catalytic reactions more efficient would both save energy and reduce emissions of climate-warming carbon dioxide gas.

"Catalysts make the world go 'round," says Sigman. "Catalysts are how we make molecules more efficiently and, more important, make molecules that can't be made using any other method."

The Utah researchers developed a new method for rapidly identifying and designing what are known as "asymmetric catalysts," which are catalyst molecules that are considered either left-handed or right-handed because they are physically asymmetrical. In chemistry, this property of handedness is known as chirality.

Chemists want new asymmetric catalysts because they impart handedness or chirality to the molecules they are used to make. For example, when a left-handed or right-handed catalyst is used to speed a chemical reaction, the chemical that results from that reaction can be either left-handed or right-handed.

"Handedness is an essential component of a drug's effectiveness," Sigman says.

Drugs generally work by latching onto proteins involved in a disease-causing process. The drug is like a key that fits into a protein lock, and chirality "is the direction the key goes" to fit properly and open the lock, says Sigman.

"However, developing asymmetric catalysts [to produce asymmetric drug molecules] can be a time-consuming and sometimes unsuccessful undertaking" because it usually is done by trial and error, he adds.

Sigman says the new study "is a step toward developing faster methods to identify optimal catalysts and insight into how to design them."

A Mathematical Approach to Catalyst Design

Harper and Sigman combined principles of data analysis with principles of catalyst design to create a "library" of nine related catalysts that they hypothesized would effectively catalyze a given reaction one that could be useful for making new pharmaceuticals. Essentially, they used math to find the optimal size and electronic properties of the candidate catalysts.

Then the chemists tested the nine catalysts known as "quinoline proline ligands" to determine how well their degree of handedness would be passed on to the chemical reaction products the catalysts were used to produce.

Sigman and Harper depicted results of the reactions using the different catalysts as a three-dimensional mathematical surface that bulges upward. The highest part of the bulge represents those among the nine catalysts that had the greatest degree of handedness.

This technique was used and can be used in the future to identify the optimal catalysts among a number of candidates. But it also revealed the unexpected link between the size and electronic properties of catalysts in determining their effectiveness in speeding reactions.

"This study shows quantitatively that the two factors are related," and knowing that will make it easier to design many future catalysts, Sigman says.


'/>"/>

Contact: Lee Siegel
lee.siegel@utah.edu
801-581-8993
University of Utah
Source:Eurekalert  

Related biology technology :

1. PointCross Releases Catalyst for Building Business-Ready SharePoint Solutions in 1/10th the Time
2. Photo-catalytic, self cleaning coating for building exteriors
3. Techstreet Launches BuildingBlocks Utility for Industry Standards Saving Time and Increasing Productivity for Engineers
4. Arts Way Manufacturing Announces Launch of New Web Site For Arts Way Scientific - Buildings For Science
5. Secret of sandcastle construction could help revive ancient building technique, researchers say
6. Building better bone replacements with bacteria
7. Hendrick Construction Renovates USC Science Building
8. RPJ Housings Rebuilding Together Event Brings Estimated $300,000 Worth Of Volunteer Labor to Northern VA
9. Building Biotech Technology Transfer Opportunities: Sponsor and Developer Strategies for Success
10. Penn collaboration leads to simpler method for building varieties of nanocrystal superlattices
11. Building a smaller, lighter future: Understanding polymer behaviors below 1 nanometer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Building better catalysts
(Date:4/29/2016)... ... April 29, 2016 , ... Proove Biosciences, Inc ., ... the launch of the Proove Health Foundation . The Foundation is a ... the use of personalized medicine for tackling the nation’s most-pressing healthcare epidemics. As ...
(Date:4/29/2016)... ... April 29, 2016 , ... Intelligent Implant Systems announced today ... via 510(k) for sale in the United States. These components expand the capabilities ... With one-level sales beginning in October of 2015, the company has seen significant ...
(Date:4/28/2016)... Boston, MA (PRWEB) , ... April 28, 2016 ... ... (EDT), Asymmetrex will deliver a talk on its first-in-class technologies for ... the 2016 Meeting on RNAiMicroRNA Biology to Reprogramming & CRISPR-based Genome ...
(Date:4/27/2016)... ... ... The Pittcon Organizing Committee is pleased to announce that Charles “Chuck” Gardner ... Committee since 1987. Since then, he has served in a number of key leadership ... both the program and exposition committees. In his professional career, Dr. Gardner is the ...
Breaking Biology Technology:
(Date:3/3/2016)... MONTEREY, Calif. , March 3, 2016 /PRNewswire/ ... Partner, launched this week highlighting advancements in flexible, ... – a record setting attendance - have gathered ... in this fast-growing field of electronics. The Flex ... a focal point for companies, R&D organizations, and ...
(Date:3/2/2016)... 2, 2016 http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ... "Global Biometrics as a Service Market ... --> http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) has announced ... as a Service Market 2016-2020" report ... Research and Markets ( http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) has ...
(Date:3/1/2016)... and SAN FRANCISCO , March 1, ... Corp. and BitGo, Inc. extends biometric authentication to the ... private keys. Bitcoin transactions that ... per month in digital assets with over 10,000 transactions ... any startup. HYPR enables enterprises to keep encrypted biometric ...
Breaking Biology News(10 mins):