Navigation Links
Building a smaller, lighter future: Understanding polymer behaviors below 1 nanometer
Date:10/5/2010

Kyoto, Japan -- Knowing how to build nanosized assemblies of polymers (long molecular chains) holds the key to improving a broad range of industrial processes, from the production of nanofibers, filters, and new materials to the manufacture of low-energy, nanoscale circuits and devices. A recent paper in Nature Communications sheds light on key behaviors of polymers in specially engineered confined spaces, opening the door to a level of control that has previously been impossible.

Scientists in Japan at Kyoto University and Nagoya University have succeeded in manufacturing custom-designed sub-nanometer scale channels, or pores, which can be manipulated to trap polymers and allow researchers to observe how these chains respond to temperature changes. Previously this level of observation was not possible, and hence much about polymer behaviors in subnanometer spaces -- in particular thermal transitions -- was unknown.

The technique uses specially designed substances known as porous coordination polymers (PCPs), which are notable for the high-degree to which their pore sizes and other characteristics can be controlled.

"PCPs allow us to design cages in which to trap specific molecules," explains lead scientist Dr. Takashi Uemura of Kyoto University's Graduate School of Engineering. "In this case, polyethylene glycol molecules -- PEGs -- can be accommodated in the cages similarly to the way in which sea eels hide in holes. In open water there is no order to their swimming. But in cylindrical pipes, they prefer to arrange themselves linearly in groups. Polymer chains do this as well, becoming orderly assembled in the PCP channels."

In this case, the PCP channels were precisely tuned to control their size and inner surface characteristics, allowing the research team to directly observe how the polymers behaved. This led to the unexpected finding that the transition temperature -- in this case, melting point -- of confined PEGs decreased as their molecular weight -- length in this instance -- increased.

"This was exactly the opposite of what we had observed in bulk, that is, 'free' PEG," elaborates Dr. Susumu Kitagawa, deputy director of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS). "We believe this to be the result of destabilization of the PEG chains under confinement. Instability increases together with chain length."

Understanding such minute details of the behaviors of nanoconfined polymers gives rise to the possibility of future breakthroughs in nanoscale manufacturing based on assemblies of small numbers of polymer chains, which may in turn be used to fabricate a wide range of new materials.


'/>"/>

Contact: Yutaka Iijima
yutaka-iijima@icems.kyoto-u.ac.jp
Institute for Integrated Cell-Material Sciences, Kyoto University
Source:Eurekalert

Related biology technology :

1. PointCross Releases Catalyst for Building Business-Ready SharePoint Solutions in 1/10th the Time
2. Photo-catalytic, self cleaning coating for building exteriors
3. Techstreet Launches BuildingBlocks Utility for Industry Standards Saving Time and Increasing Productivity for Engineers
4. Arts Way Manufacturing Announces Launch of New Web Site For Arts Way Scientific - Buildings For Science
5. Secret of sandcastle construction could help revive ancient building technique, researchers say
6. Building better bone replacements with bacteria
7. Hendrick Construction Renovates USC Science Building
8. RPJ Housings Rebuilding Together Event Brings Estimated $300,000 Worth Of Volunteer Labor to Northern VA
9. Building Biotech Technology Transfer Opportunities: Sponsor and Developer Strategies for Success
10. Penn collaboration leads to simpler method for building varieties of nanocrystal superlattices
11. New silicon-germanium nanowires could lead to smaller, more powerful electronic devices
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/5/2016)... 5, 2016 ATCC, the premier global biological ... the medical and life science researchers that are working ...   CDC website . --> ... virus is a single-stranded RNA virus of the Flaviviridae ... Dengue and Chikungunya Viruses. Zika virus is transmitted to ...
(Date:2/5/2016)... 5, 2016 Australian-US drug discovery and development company, ... appointment of a new Chairman, Mr John O,Connor , ... immediately. James Garner , has also been ... former Acting CEO, Mr Iain Ross , will resume ... --> James Garner , has also been formally appointed ...
(Date:2/4/2016)... ... February 04, 2016 , ... Shimadzu Scientific Instruments ... host live demos and poster sessions, and present on the analysis of mycotoxins ... place March 6 to 10 at the Georgia World Congress Center in Atlanta, ...
(Date:2/4/2016)... Columbia and MENLO PARK, Calif. ... (OTCQX: DMPI) ("DelMar" and the "Company"), a biopharmaceutical company focused ... announced that it will present at the 18 th ... February 8, 2016 at 10:00 a.m. EST in ... , DelMar,s president and CEO, will provide an update on ...
Breaking Biology Technology:
(Date:1/11/2016)... JOSE, Calif. , Jan. 11, 2016 ... of human interface solutions, today announced that its ClearPad ... driver integration (TDDI) products won two separate categories in ... Best Mobile Innovator and Best Technology Breakthrough. The Synaptics ... system cost, a simplified supply chain, thinner devices, brighter ...
(Date:1/8/2016)... -- NXTD ), a company focused on ... privately held leading direct seller of vacation and entertainment ... company announced that on December 31, 2015, that WorldVentures ... to develop a proprietary new wireless smart card for ... unique smart wallet that serves to securely store all ...
(Date:1/7/2016)... , Jan. 7, 2016  A United States District ... first court in the country to interpret a biometric ... to go forward against the photo website Shutterfly brought ... BRIAN NORBERG vs. SHUTTERFLY, INC.; and THISLIFE, ... alleges that Shutterfly violates the Illinois Biometric Privacy Act ...
Breaking Biology News(10 mins):