Navigation Links
Building a smaller, lighter future: Understanding polymer behaviors below 1 nanometer
Date:10/5/2010

Kyoto, Japan -- Knowing how to build nanosized assemblies of polymers (long molecular chains) holds the key to improving a broad range of industrial processes, from the production of nanofibers, filters, and new materials to the manufacture of low-energy, nanoscale circuits and devices. A recent paper in Nature Communications sheds light on key behaviors of polymers in specially engineered confined spaces, opening the door to a level of control that has previously been impossible.

Scientists in Japan at Kyoto University and Nagoya University have succeeded in manufacturing custom-designed sub-nanometer scale channels, or pores, which can be manipulated to trap polymers and allow researchers to observe how these chains respond to temperature changes. Previously this level of observation was not possible, and hence much about polymer behaviors in subnanometer spaces -- in particular thermal transitions -- was unknown.

The technique uses specially designed substances known as porous coordination polymers (PCPs), which are notable for the high-degree to which their pore sizes and other characteristics can be controlled.

"PCPs allow us to design cages in which to trap specific molecules," explains lead scientist Dr. Takashi Uemura of Kyoto University's Graduate School of Engineering. "In this case, polyethylene glycol molecules -- PEGs -- can be accommodated in the cages similarly to the way in which sea eels hide in holes. In open water there is no order to their swimming. But in cylindrical pipes, they prefer to arrange themselves linearly in groups. Polymer chains do this as well, becoming orderly assembled in the PCP channels."

In this case, the PCP channels were precisely tuned to control their size and inner surface characteristics, allowing the research team to directly observe how the polymers behaved. This led to the unexpected finding that the transition temperature -- in this case, melting point -- of confined PEGs decreased as their molecular weight -- length in this instance -- increased.

"This was exactly the opposite of what we had observed in bulk, that is, 'free' PEG," elaborates Dr. Susumu Kitagawa, deputy director of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS). "We believe this to be the result of destabilization of the PEG chains under confinement. Instability increases together with chain length."

Understanding such minute details of the behaviors of nanoconfined polymers gives rise to the possibility of future breakthroughs in nanoscale manufacturing based on assemblies of small numbers of polymer chains, which may in turn be used to fabricate a wide range of new materials.


'/>"/>

Contact: Yutaka Iijima
yutaka-iijima@icems.kyoto-u.ac.jp
Institute for Integrated Cell-Material Sciences, Kyoto University
Source:Eurekalert

Related biology technology :

1. PointCross Releases Catalyst for Building Business-Ready SharePoint Solutions in 1/10th the Time
2. Photo-catalytic, self cleaning coating for building exteriors
3. Techstreet Launches BuildingBlocks Utility for Industry Standards Saving Time and Increasing Productivity for Engineers
4. Arts Way Manufacturing Announces Launch of New Web Site For Arts Way Scientific - Buildings For Science
5. Secret of sandcastle construction could help revive ancient building technique, researchers say
6. Building better bone replacements with bacteria
7. Hendrick Construction Renovates USC Science Building
8. RPJ Housings Rebuilding Together Event Brings Estimated $300,000 Worth Of Volunteer Labor to Northern VA
9. Building Biotech Technology Transfer Opportunities: Sponsor and Developer Strategies for Success
10. Penn collaboration leads to simpler method for building varieties of nanocrystal superlattices
11. New silicon-germanium nanowires could lead to smaller, more powerful electronic devices
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... On Thursday, March 23, 2017, ... down 0.07%; the Dow Jones Industrial Average edged 0.02% ... closed at 2,345.96, marginally dropping 0.11%. US markets saw ... 4 sectors finished in red, and 1 sector ended ... reports coverage on the following Biotechnology equities: BioDelivery Sciences ...
(Date:3/23/2017)... (PRWEB) , ... March 23, 2017 , ... ... viscoelastic material that exhibits both viscous and elastic characteristics when deformed, which is ... polymer exhibits properties to gently absorb compressive forces and return to its natural ...
(Date:3/23/2017)... March 23, 2017  Northwest Biotherapeutics (OTCQB: NWBO) ... immune therapies for solid tumor cancers, today announced ... financing it announced last Friday, March 17, 2017. ... institutional investors securities totaling 28,843,692 shares, comprised of ... 10,000,000 shares of Class C Warrants pre-funded at ...
(Date:3/23/2017)... MENLO PARK, Calif., March 23, 2017  BioPharmX ... developing products for the dermatology market, today reported ... Jan. 31, 2017, and will provide an update ... from the year. "We are pleased ... productive year for BioPharmX," said President Anja Krammer. ...
Breaking Biology Technology:
(Date:3/2/2017)... -- Summary This report provides all the information ... and activities since 2010. ... Read the full report: http://www.reportlinker.com/p03605615-summary/view-report.html ... provides an in-depth insight into the partnering activity of one ... demand company reports are prepared upon purchase to ensure inclusion ...
(Date:3/2/2017)... Australian stem cell and regenerative medicine company, ... an agreement with the Monash Lung Biology Network, a ... and Department of Pharmacology at Monash University, ... to support the use of Cymerus™ mesenchymal stem cells ... Asthma is a chronic, long term lung condition recognised ...
(Date:2/28/2017)... , February 28, 2017 News solutions ... ... Amsterdam from 14 to 16 March, Materna will ... and show how seamless travel is a real benefit for passengers. ... added biometrics to their passenger touch point solutions to take passengers ...
Breaking Biology News(10 mins):