Navigation Links
Broad-scale genome tinkering with help of an RNA guide

DURHAM, N.C. -- Duke researchers have devised a way to quickly and easily target and tinker with any gene in the human genome. The new tool, which builds on an RNA-guided enzyme they borrowed from bacteria, is being made freely available to researchers who may now apply it to the next round of genome discovery.

The new method also has obvious utility for gene therapy and for efforts to reprogram stem or adult cells into other cell types for example, to make new neurons from skin cells.

"We have the genome sequence and we know what all the parts are, but we are still in need of methods to manipulate it easily and precisely," says assistant professor Charles Gersbach, of Duke's Pratt School of Engineering and the Duke Institute for Genome Sciences & Policy. "That's where this engineering tool comes in."

Gersbach's team had already been in the business of tinkering with the genome using specially engineered proteins, but the process was difficult and slow. It was hard to imagine how to scale it up for the investigation of hundreds or even thousands of genes in the way genome scientists really wanted to do. "That's where the conversation always broke down," he says.

Then, he and post-doctoral researcher Pablo Perez-Pinera found out about an RNA-guided protein called Cas9 found in a Streptococcus bacteria. The bacteria rely on Cas9 as part of an adaptive immune system to defend themselves against infection by viruses, cutting out a piece of the viral DNA and inserting it into their own genome for recognition of future infection. Other scientists then showed that those immune system components could function inside human cells.

Gersbach's team recognized the RNA-guided nature of this system as a potential game-changer for the gene engineering work they do.

In the study now reported in Nature Methods on July 25, Gersbach and his colleagues modified Cas9 to turn genes on rather than cut them. They showed that their tool could turn on very specific genes in human cells. They went on to demonstrate use of the tool to modify targets of interest for fighting inflammation and activating gene networks for making neurons, muscle cells or stem cells. They showed they could induce a gene known to alleviate symptoms of sickle cell disease, too.

In other words, it works, and it works on genes that matter from a clinical perspective. In principle, the RNA-guided tool could be used to modify or influence any gene anywhere in the genome.

Gersbach now hopes to apply the new tool along with collaborators in the IGSP to investigate the functions of thousands of sites across the genome. With tissue engineer Farshid Guilak, a professor of engineering and orthopaedic surgery, he will continue to work on its application in the fight against inflammatory and autoimmune diseases such as arthritis.

"This simple and versatile tool makes it easy for anyone to do this," Gersbach says.


Contact: Kendall Morgan
Duke University

Related biology technology :

1. Worlds First IVF Baby Born after Preimplantation Genome Sequencing is Now 11 Months Old
2. Rapid Identification and Strain Typing of Salmonella in Food Using Genome Sequence Scanning Technology
3. Personal Genome Diagnostics And Blueprint Medicines Form Collaboration to Identify Novel Kinase Targets
4. Venter Institute-Led Team Recovers and Sequences Genome of Periodontal Pathogen from Biofilm in Hospital Sink using Single-Cell Genomics
5. Personal Genome Diagnostics Inc. Licenses Genome-Mapping Technology from Johns Hopkins University and Expands Its Cancer Genome Analysis Business
6. New York Genome Institute Selects Exemplar LIMS to Manage Next Gen Sequencing Labs
7. The Genome Analysis Center Selects Convey to Support Next-Generation Sequencing
8. Whole Genome Sequencing of Triple Negative Breast Cancer Reveals Previously Unreported Mutations
9. Pig genome offers insights into the feistiest of farm animals
10. Researchers unlock disease information hidden in genomes control circuitry
11. In massive genome analysis ENCODE data suggests gene redefinition
Post Your Comments:
(Date:11/24/2015)... ... November 24, 2015 , ... ... year and one of the premier annual events for pharmaceutical manufacturing: 2015 Annual ... November 2015, where ISPE hosted the largest number of attendees in more than ...
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide ... Carolina , today announced that the company has set a ... a 391% quarter on quarter growth posted for Q3 of 2014 ... and Mexico , with the establishment of ... December 2015. --> United Kingdom and ...
(Date:11/24/2015)... , ... November 24, 2015 , ... This fall, global ... competitive events in five states to develop and pitch their BIG ideas to improve ... each state are competing for votes to win the title of SAP's Teen Innovator, ...
(Date:11/24/2015)... November 24, 2015 SHPG ) announced today ... the Piper Jaffray 27 th Annual Healthcare Conference in ... 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Officer, will participate in the Piper Jaffray 27 th Annual ... on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. ...
Breaking Biology Technology:
(Date:11/17/2015)... PARIS , November 17, 2015 ... 17 au 19 novembre  2015.  --> Paris ... 2015.  --> DERMALOG, le leader de l,innovation ... à la fois passeports et empreintes sur la même ... pour les passeports et l,autre pour les empreintes digitales. ...
(Date:11/12/2015)... 12, 2015  A golden retriever that stayed healthy ... (DMD) has provided a new lead for treating this ... Broad Institute of MIT and Harvard and the University ... Cell, pinpoints a protective gene ... disease,s effects. The Boston Children,s lab of Lou ...
(Date:11/10/2015)... 10, 2015  In this report, the ... of product, type, application, disease indication, and ... report are consumables, services, software. The type ... biomarkers, efficacy biomarkers, and validation biomarkers. The ... diagnostics development, drug discovery and development, personalized ...
Breaking Biology News(10 mins):